200 знаменитых головоломок мира - [25]
— Если бы я только нашел нужное поле, — сказал один из них, — сокровища были бы моими, а раз владелец не оставил наследника, я имею на них такое же право, как и всякий другой.
— Как бы тебе это удалось? — спросил его приятель.
— А вот как. В документе, попавшем в мои руки, говорится, что поле квадратное и что сокровища зарыты на нем в месте, отстоящем точно на два фарлонга[16] от одного угла, на три фарлонга от соседнего угла и на четыре фарлонга от угла, соседнего с этим последним. Видишь ли, хуже всего то, что почти все поля в округе квадратные, и я не уверен, найдутся ли среди них два поля одинаковых размеров. Если бы я знал размеры поля, я бы быстро его нашел и, сделав эти простые измерения, добрался бы до сокровищ.
— Но ты не знаешь, ни с какого угла начинать, ни в каком направлении надо переходить к соседнему углу.
— Послушай, приятель, это значит, что придется выкопать от силы восемь ям; раз в бумаге говорится, что сокровища лежат на глубине трех футов, то, бьюсь об заклад, это не заняло бы у меня много времени.
— Надо вам сказать, джентльмены, — продолжал Докинс, — что я немного занимался математикой, а потому, услышав разговор, сразу же понял, что место, которое находится точно в двух, трех и четырех фарлонгах от последовательных углов квадрата, может быть только в квадрате, имеющем вполне определенную площадь. В произвольном квадрате не найдется точки, отстоящей от углов на указанные расстояния. Такая точка есть только на поле одного размера, и именно об этом не подозревали эти двое. Я предоставляю вам самим определить эту площадь.
Итак, когда я установил размер поля, мне потребовалось уже немного времени, чтобы найти и само поле, ибо человек упомянул в разговоре, о каком районе шла речь. Мне даже не пришлось копать восемь ям; к моему счастью, третья яма оказалась на нужном месте. И только улыбку вызывает мысль об этом бедном парне, который будет бродить вокруг, до конца жизни повторяя:
«Если бы я только знал размеры поля», тогда как, по существу, он сам вручил мне сокровища. Я пытался разыскать этого человека, чтобы передать ему анонимно некую компенсацию, но безуспешно. Может быть, он нуждался в вовсе не большой сумме денег, когда спас меня от краха.
Сможет ли читатель определить искомую площадь поля, пользуясь сведениями, подслушанными в пивной? Это небольшая элегантная головоломка, которая еще раз показывает, что искусство решать такого рода задачи может пригодиться в самых непредвиденных обстоятельствах.
ГОЛОВОЛОМКИ ПРОФЕССОРА
— Ба, вот и Профессор! — воскликнул Григсби. — Мы попросим его показать нам новые головоломки.
Дело происходило в сочельник, и клуб был почти безлюден. Из всех его членов только Григсби, Хокхерст да я, казалось, собирались задержаться в городе в час общего веселья и пирогов. Однако человек, который только что вошел, был желанным дополнением к нашей маленькой компании. Профессор, как мы его прозвали, был очень популярен в клубе, и когда, как и теперь, атмосфера становилась довольно вялой, его приход оказывался истинным благословением.
Это был веселый человек средних лет, с добрым сердцем, но несколько склонный к цинизму. Всю свою жизнь он возился со всевозможными головоломками, загадками и задачами, и если оказывалось, что он чего-то не знал, то все считали, что этого и не стоит знать. Его головоломки всегда были отмечены своеобразным очарованием, и это объяснялось тем, что он умел придать им занимательную форму.
— Вы именно тот человек, который нам сейчас совершенно необходим, — сказал Хокхерст. — Есть ли у вас что-нибудь новенькое?
— У меня всегда есть что-нибудь новенькое, — был наигранно-самоуверенный ответ, ибо на самом деле Профессор был человеком скромным. — Я просто переполнен разными идеями.
— Где вы все это добываете? — спросил я.
— Всюду и везде, каждую минуту моего бодрствования. Но мои лучшие головоломки пришли мне в голову во сне.
— Разве все хорошие идеи еще не использованы?
— Конечно, нет. И даже старые головоломки допускают улучшение, украшение и обобщение. Возьмите хотя бы магические квадраты. Они были изобретены в Индии до нашей эры и появились в Европе где-то около четырнадцатого века, когда им приписывались некоторые магические свойства, которые, боюсь, они уже утратили. Любой ребенок сумеет расположить числа от 1 до 9 в виде квадрата так, чтобы сумма по любому из восьми направлений равнялась 15; но обратите внимание, что совсем другая задача возникнет, если вы вместо чисел возьмете монеты.
67. Головоломка с монетами. Тут Профессор начертил клетки и положил в две из них крону и флорин[17], как показано на рисунке.
— Теперь, — продолжал он, — поместите наименьшие из имеющих хождение в Англии монет в семь пустых клеточек так, чтобы в каждом из трех столбцов, в каждой из трех строк и на каждой диагонали сумма равнялась пятнадцати шиллингам. Разумеется, в каждой клетке должна находиться по крайней мере одна монета и ни в каких двух клетках нельзя помещать одинаковые суммы.
— Но как монеты влияют на задачу? — спросил Григсби.
— Это вы увидите, когда ее решите.
— Я сначала решу ее с числами, а уж потом подставлю монеты, — сказал Хокхерст. Однако через пять минут он воскликнул: — Проклятие! Мне придется поместить 2 в угол. Можно ли передвинуть флорин с исходной позиции?
Сборник принадлежит перу одного из основоположников занимательной математики Генри Э. Дьюдени. Кроме беллетризованных задач на темы «Кентерберийских рассказов» Д. Чосера, в него вошло более 150 других логических, арифметических, геометрических, алгебраических задач и головоломок.Книга доставит удовольствие всем любителям занимательной математики.
Генри Э. Дьюдени по праву считается классиком занимательной математики. Многие его задачи, породив обширную литературу и вызвав многочисленные подражания, вошли в ее золотой фонд.В предлагаемой книге собрано 520 задач и головоломок Дьюдени по арифметике, алгебре, геометрии, разрезанию и составлению фигур. Читателя ждет встреча с постоянно действующими героями Дьюдени — семейством Крэкхэмов, профессором Рэкбрейном и др.Книга доставит удовольствие всем любителям занимательной математики.
«Наука не сводится к сумме фактов, как здание не сводится к груде камней». (Анри Пуанкаре) Автор теоремы, сводившей с ума в течение века математиков всего мира, рассказывает о своем понимании науки и искусства. Как выглядит мир, с точки зрения математики? Как разрешить все проблемы человечества посредством простых исчислений? В чем заключается суть небесной механики? Обо всем этом читайте в книге!
Мог ли Авраам отказаться принести в жертву Исаака, как Бог приказал ему сделать, и при этом избежать Божьего гнева за отказ? Что бы случилось, если бы Ева не сорвала яблоко с древа познания добра и зла? Что было бы, откажись Адам попробовать это яблоко? Автор исследует мотивы поведения тех или иных библейских персонажей, анализирует рациональность их действий и обсуждает мораль их поведения, а также возможные варианты исходов тех или иных библейских сюжетов в зависимости от того, как их герои поступили бы в той или иной ситуации.
Мы живем в мире гораздо более турбулентном, чем нам хотелось бы думать, но наука, которую мы применяем для анализа экономических, финансовых и статистических процессов или явлений, по большей части игнорирует важную хаотическую составляющую природы мироздания. Нам нужно привыкнуть к мысли, что чрезвычайно маловероятные события — тоже часть естественного порядка вещей. Выдающийся венгерский математик и психолог Ласло Мерё объясняет, как сосуществуют два мира, «дикий» и «тихий» (которые он называет Диконией и Тихонией), и показывает, что в них действуют разные законы.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Первый перевод с французского книги «Recoltes et Semailles» выдающегося математика современности Александра Гротендика. Автор пытается проанализировать природу математического открытия, отношения учителя и учеников, роль математики в жизни и обществе. Текст книги является философски глубоким и нетривиальным и носит характер воспоминаний и размышлений. Книга будет интересна широкому кругу читателей — математикам, физикам, философам и всем интересующимся историческими, методическими и нравственными вопросами, связанными с процессом математического открытия и возникновения новых теорий.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.