Общественная организация человечества (вычисления и таблицы)

Общественная организация человечества (вычисления и таблицы)

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность. Книга завершается финалом, связывающим воедино темы и сюжетные линии, исследуемые на протяжении всей истории. В целом, книга представляет собой увлекательное и наводящее на размышления чтение, которое исследует человеческий опыт уникальным и осмысленным образом.

Жанр: Научная фантастика
Серии: -
Всего страниц: 8
ISBN: -
Год издания: Не установлен
Формат: Полный

Общественная организация человечества (вычисления и таблицы) читать онлайн бесплатно

Шрифт
Интервал

Константин Циолковский

Общественная организация человечества

(вычисления и таблицы)

ПРЕДИСЛОВИЕ

Сущность устройства общества изложена была в моем изданном сочинении "Горе и Гений" (1916 г.). Также и из предлагаемого труда видна идея общественного устройства. Кроме того, вскоре постараюсь издать подробности, хотя полнота тут менее всего возможна. Она есть недостижимый идеал. К нему общество всегда будет идти, но никогда не дойдет. Останется расстояние, которое с течением времени будет уменьшаться все более и более.

С 1916 г. много моих неизданных рукописей занято этим вопросом.

Объясняю, почему я употребляю в русских сочинениях русские буквы в формулах. Думаю, что математика проникнет во все области знания. Формулы содержат сокращенные обозначения величин, т.е. означают слова, а нередко и длинные фразы. Язык формул так же сложен, как и обыкновенный язык. Было бы недурно употреблять для этого латинский язык как известный большинству ученых. Но этот язык мертвый. На нем никто теперь не говорит и не пишет. Поэтому он отстал и не может выражать новых научных и общественных понятий. Какой же язык взять? Общенародный пока не укрепился и не развился достаточно. Французский будет непонятен русским, немцам и пр. Да и нужно его хорошо знать, иначе не подберешь очень сложных обозначений величин. Пока всякий народ может брать для формул только свой родной язык и его алфавит. Когда разовьется и установится общечеловеческий язык, тогда, конечно, и текст, и формулы можно писать на этом языке.

У нас встарину русский язык мешали с французским. Не смешно ли это! Также смешно мешать разные алфавиты и языки, когда можно употреблять один.

При простых формулах неудобство это не составляет особенного затруднения. Например, скорость (V), время (t), длина (l) и т.д. Но в сложных вычислениях скорость может быть десяти сортов. Обозначать так: V1,V2,V3 иногда бессмысленно, потому что каждая скорость имеет свою характеристику и должна быть обозначена буквами характеризующего слова. Латинские обозначения оставляю только для обозначения логарифмирования.

Километры тут называю верстами, гектары - десятинами.

Вычисления приблизительны. Даю расчеты и формулы, которых никто в мире еще не давал. Нумера формул непоследовательны, так как извлечены из другой рукописи с прибавлениями.

Обозначим численность населения через (Н). В частности, это может быть население Земли (Нз), Солнечной системы (Нc), какой-нибудь планеты (Нп), страны (Нc) и т.д. Подразумеваем людей всякого возраста и пола.

Число членов в каждом обществе разных разрядов выразим так: Ho1, Ho2, Ноз... Нок... Ноп, т.е. население (Н) общества (о) первого разряда, второго, какого-нибудь (к) и последнего (п).

Каждое общество какого (к) бы то ни было разряда имеет небольшое число членов (от 100 до 1000), чтобы члены общества могли хорошо знать друг друга и верно отбирать лучших на общественные должности.

Общества одного разряда предполагаются приблизительно равными по численности и по качеству, хотя одно состоит из индусов, другое - из китайцев, третье - из негров, четвертое - из англичан и т.д. Качественного равенства тут как будто быть не может, но по крайней мере общества одной страны (или нации) могут быть равны. Потом при полной свободе перемещения народов, при смешении их возможно и некоторое среднее равенство. Отдельные члены одного общества также только приблизительно сходны по своей одаренности. Численность обществ разных разрядов может быть и одинакова и различна. Численность, означенная нами буквами, считается до выборов, т.е. вместе с выбранными. Отбор лучших от разных обществ или выбор (В) будет:

2B1, 2B2, 2Вз... 2Вк... 2Вп.

(В) есть численность отбора, относящаяся к управлению обществом или к численности полного совета. Столько же людей отбирается (В) и для составления следующих высших обществ, т.е. второго разряда.

Дело в том, что половинное (В) число всех (2В) выборных составляет совет своего общества, тогда как другая половина (В) выборных от всех обществ первого порядка идет на составление многих малых обществ второго разряда.

Через определенный срок происходит смена: советы первых обществ уходят в общества второго порядка (в качестве членов), а члены общества второго порядка переходят в общества первого разряда в качестве членов совета. Так выборные перемещаются до тех пор, пока ими довольны выборщики, т.е. пока не выберут новых.

Первое общество само может исключать своих членов на отруба и принимать обратно. Но все следующие высшие общества не имеют этого права. Они только могут указать на уклонившихся от закона, но судят и исключают их избравшие их общества. Например, члены шестого общества могут быть исключены только членами пятого общества, члены третьего - только членами второго. Если же состав общества будет зависеть от него самого, то оно может развратиться и служить не выборщикам, а самим себе.

Как видно из разности обозначений, я тут принимаю не одинаковое число членов в обществах разных разрядов (Нок). Только в обществах одного разряда число членов предполагается постоянным. Также и отбор (2Вк) от обществ разных степеней не одинаков.


Еще от автора Константин Эдуардович Циолковский
Воля вселенной

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Искатель, 1962 № 01

«ИСКАТЕЛЬ» — советский и российский литературный альманах. Издается с 1961 года. Публикует фантастические, приключенческие, детективные, военно-патриотические произведения, научно-популярные очерки и статьи. В 1961–1996 годах — литературное приложение к журналу «Вокруг света», с 1996 года — независимое издание.В 1961–1996 годах выходил шесть раз в год, в 1997–2002 годах — ежемесячно; с 2003 года выходит непериодически.


Причина космоса

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Свойства космоса

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Горе и гений

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


На Луне

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Рекомендуем почитать
Сказание о Четвертой Луне

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Спасители Ураканда

Серия детской литературы издательства «Сократ» «Уроки фантазии», давно завоевавшая симпатии и юных, и взрослых читателей, пополнилась фантастической повестью екатеринбургского писателя Олега Раина «Спасители Ураканда».Ураканд — это завоеванная и фактически погубленная чудовищной Бранганией некогда сказочно прекрасная и счастливая страна. Король Ураканда спасается от гибели и находит прибежище на Земле. Он ищет способ освободить свое королевство, однако удается это ему не в одиночку. Союзниками доброго волшебника становятся обычные ребята из летнего лагеря отдыха.



Ради твоей улыбки

Блестящий аристократ Николас Дилэни долгие годы бежал от брака как от чумы… но в глубине души всегда оставался истинным джентльменом.Именно поэтому, желая спасти репутацию обесчещенной девушки, он предложил ей руку и сердце. От появления в своем холостяцкрм доме молодой жены Николас поначалу не ждал ничего, кроме несчастий и хлопот… но постепенно невинное очарование юной Элинор Чивенхем покорило его, и беспутный прожигатель жизни познал всю силу Любви — любви нежной и страстной, возвышенной — и земной…


«Одним меньше»

Раздражение группы нейронов, названных «Узлом К», приводит к тому, что силы организма удесятеряются. Но почему же препараты, снимающие раздражение с «Узла К», не действуют на буйнопомешанных? Сотрудники исследовательской лаборатории не могут дать на этот вопрос никакого ответа, и только у Виктора Николаевича есть интересная гипотеза.


Нерешенное уравнение

Первоначальный вариант рассказа был издан в 1962 году под названием «Х=».


Неопровержимые доказательства

Большой Совет планеты Артума обсуждает вопрос об экспедиции на Землю. С одной стороны, на ней имеются явные признаки цивилизации, а с другой — по таким признакам нельзя судить о степени развития общества. Чтобы установить истину, на Землю решили послать двух разведчиков-детективов.


На дне океана

С батискафом случилась авария, и он упал на дно океана. Внутри аппарата находится один человек — Володя Уральцев. У него есть всё: электричество, пища, воздух — нет только связи. И в ожидании спасения он боится одного: что сойдет с ума раньше, чем его найдут спасатели.


На Дальней

На неисследованной планете происходит контакт разведчики с Земли с разумными обитателями планеты, чья концепция жизни является совершенно отличной от земной.


Дорога к вам

Биолог, медик, поэт из XIX столетия, предсказавший синтез клетки и восстановление личности, попал в XXI век. Его тело воссоздали по клеткам организма, а структуру мозга, т. е. основную специфику личности — по его делам, трудам, списку проведённых опытов и сделанным из них выводам.