Звук за работой - [10]

Шрифт
Интервал

Изменение величины атмосферного давления может оказаться довольно сложным, как, например, в случае звучания оркестра, когда имеется много различных источников звука. В этом случае сложные колебания воспринимаются как единое целое всеми струнами арфы. Но каждая из них приходит в колебание только тогда, когда среди всех звуков содержится соответствующая ей частота, которую струна арфы воспринимает, совершая вынужденное колебание.

Глухой музыкант

Трагедией жизни великого немецкого композитора Бетховена, автора замечательных симфоний, концертов, сонат и других музыкальных произведений, была постепенно усиливавшаяся глухота. В последние годы своей жизни гениальный музыкант оглох окончательно.

Но, несмотря на потерю слуха, Бетховен создавал свою потрясающую музыку, будучи даже совершенно глухим!

Почему же ему это удавалось? Как мог композитор творить, не слыша звуков оркестра, не имея возможности услышать свое произведение?

Дело в том, что глухой Бетховен все-таки слышал звуки, создаваемые им. Когда композитор проигрывал музыку на рояле, он вел себя на первый взгляд очень странно: в зубах у великого музыканта находилась дирижерская палочка, и он крепко упирался ею в крышку рояля.


Так он слушал музыку. Не удивляйтесь, мы не оговорились — Бетховен именно слушал музыку, хотя и был совершенно глух.

Это необычайное восприятие звука называют костной проводимостью. Многие из вас знают, как резко усиливаются еле слышные звуки камертона, если прислонить его к темени или к зубам.

В этих случаях звук распространяется в костях черепа, а это приводит к изменению положения улитки среднего уха. Деформация стенок улитки возбуждает колебание жидкости, и появляется то, что в науке называют слуховым раздражением. Короче говоря, мы слышим звуки. Полная глухота наступает лишь тогда, когда болезнью поражено и внутреннее ухо. И не имея возможности слушать звуки со стороны, глухой Бетховен не потерял способности контролировать себя.

Между прочим, благодаря костной проводимости мы слышим собственный голос. Попробуйте записать свой голос на магнитофон, а потом прослушать запись. Вас удивят эти звуки. Вы их никогда не слышали, хотя это ваш же собственный голос.

Почему же его нельзя узнать?

Дело в том, что мы привыкли воспринимать свой голос благодаря костной проводимости; поэтому тембр его в записи будет другим, не похожим на тот, который мы ежедневно слышим. Наш собственный голос покажется нам чужим и незнакомым.

Так мы слышим себя.

Слушая различные звуки, мы можем точно определить, откуда они доносятся, с какой стороны распространяются. Как мы это делаем?

Слуховые раздражения каждого уха приходят в мозг одновременно только в том случае, когда источник звука находится на равном расстоянии от ушей. Во всех остальных случаях слуховое раздражение, посылаемое одним ухом, приходит в мозг раньше, чем от другого. Мы сразу реагируем на это, поворачивая голову в ту сторону, каким ухом мы раньше услышим звук. Таким образом, восприятие звука двумя ушами делает возможным определить положение источника, излучающего звук. Это называется бинауральным эффектом.

Как бы звучал Царь-колокол

Вверх по течению Москвы-реки от устья Яузы до устья Неглинки, на крутом холме, восемь веков тому назад возникло крохотное поселение. Основатель этого поселения князь Юрий Долгорукий выбрал этот холм, учитывая его особое положение в сравнении с другими. Холм был покрыт густым, непроходимым лесом, который окаймляли полноводные реки. В те далекие от нас времена густые, непроходимые леса называли «бор» или «кремь». Отсюда и происходит, по мнению историков, слово «Кремль».

Крохотное поселение быстро разрасталось. Новые поселенцы располагали свои селения вокруг Кремля, на других, близлежащих холмах.

Со временем поселения превратились в огромный город, имя которого — Москва.

Для первых поселенцев Москвы было ясно, что ни дремучий бор, ни полноводье рек не могут защитить их от непрошеных гостей. Поэтому они воздвигли вокруг холма, у самых берегов рек Москвы и Неглинки, толстые дубовые стены с башнями.

Холм, огражденный дубовыми стенами, и был в те времена городом, а спустя восемь веков превратился в центр столицы великого социалистического государства — Союза Советских Социалистических Республик.

Во времена Дмитрия Донского дубовые стены, пришедшие в ветхость, были заменены новыми, уже не деревянными, а каменными. Камень для стен был выбран белый. Поэтому город стал называться белокаменным.

При Иване III белокаменные стены, выветренные непогодой и израненные бесчисленными врагами, стали заменять новыми, кирпичными. Благодаря заботам потомков стены и башни сохранились до наших дней.

В центре Кремля, на самом высоком месте холма, была выстроена колокольня более восьмидесяти метров высоты. Строили, достраивали колокольню на протяжении чуть-чуть менее ста лет — с 1505 по 1600 год.

Колокольня Ивана Великого


На верх колокольни ведут крутые лестницы. По ним поднимались дозоры для обозрения окрестностей Москвы.

Обнаружив приближение незваных гостей, дозоры предупреждали об этом горожан набатом колоколов. Он разносился далеко-далеко и был слышен в едва видимых с башни деревнях, разбросанных в бескрайных лесах, окружающих город.


Рекомендуем почитать
Революция в физике

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.


Астрономия за 1 час

Освоение космоса давно шагнуло за рамки воображения:– каждый год космонавты отправляются за пределы Земли;– люди запускают спутники, часть которых уже сейчас преодолела Солнечную систему;– огромные телескопы наблюдают за звездами с орбиты нашей планеты.Кто был первым первопроходцем в небе? Какие невероятные теории стоят за нашими космическими достижениями? Что нас ждет в будущем? Эта книга кратко и понятно расскажет о самых важных открытиях в области астрономии, о людях, которые их сделали.Будьте в курсе научных открытий – всего за час!


Покоренный электрон

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Климатическая наука: наблюдения и модели

Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.