Звезды: их рождение, жизнь и смерть - [156]

Шрифт
Интервал

г, т. е. миллиард тонн, гравитационный радиус
10>-13 см, что близко к классическому радиусу электрона...

Огромный теоретический интерес представляет характер коллапса с точки зрения воображаемого наблюдателя, находящегося на коллапсировавшем теле. Как уже говорилось, момент прохождения сжимающейся звездой шварцшильдовской сферы для такого наблюдателя ничем не выделен. Хотя полной ясности по поводу судьбы сжимающейся звезды у ученых пока нет, все же не видно причин, почему бы ей не сжаться в точку. Высказывались робкие надежды, что ситуация может быть другой при плотности

10>93 г/см>3 (!). При таких плотностях должны становиться существенными квантовые явления в сильных гравитационных полях, хотя что это такое, никто толком сейчас не знает. Разумеется, как уже подчеркивалось выше, с точки зрения внешнего наблюдателя такая ситуация никогда не реализуется. Но это не значит, что обсуждение этой проблемы лишено какого бы то ни было физического смысла. Ведь шварцшильдовская сфера существует отнюдь не только у звезд. Любая масса, в частности, сколь угодно большая, имеет свой гравитационный радиус. Известно, что если бы средняя плотность вещества во Вселенной превосходила
10>-29 г/см>3, Вселенная была бы замкнутой. Но это то же самое, что вся Вселенная находилась бы под своим гравитационным радиусом. При современном уровне наблюдательной астрономии нельзя исключить возможность. того, что если не вся Вселенная, то ее отдельные, достаточно большие и массивные части находятся внутри своих шварцшильдовских сфер. Например, некоторые теоретики считают, что в ядрах галактик имеются весьма массивные черные дыры. Заметим, что средняя плотность вещества внутри шварцшильдовской сферы
1/M>2. Поэтому, если масса черной дыры M достаточно велика (например,
10>8
10>9M
), то средняя плотность будет сравнительно низкой, и там, в принципе, могут находиться не только воображаемые, но и вполне реальные наблюдатели. Таким образом, вопрос о том, сжимается ли коллапсирующий объект в точку (т. е. до бесконечно высокой плотности) или что-то ему это сделать мешает, представляет отнюдь не абстрактный интерес. Еще раз подчеркнем, что однозначного ответа на этот вопрос пока еще наука не дает.

Однако при всей важности этих проблем для астрофизиков (да и не только астрофизиков) основное — это обнаружить во Вселенной реальные (так сказать, «живые», хотя и лишенные «собственных волос») черные дыры.

В принципе сейчас можно указать по крайней мере на три вида таких наблюдений: 1. Поиски «невидимых» черных дыр в двойных (или кратных) звездных системах. 2. Поиски черных дыр в двойных звездных системах, являющихся мощными источниками рентгеновского излучения. 3. Поиски гравитационного излучения, сопутствующего коллапсу.

Что касается поисков невидимых, но достаточно массивных компонент в двойных системах, то следует заметить, что эта задача столь же трудна, как и неопределенна. Хотя разные авторы в последние годы обращали внимание на несколько «подозрительных» двойных систем (в том числе знаменитая система

Лиры, а также
Близнецов,
Водолея и ряд других объектов), результаты их анализа все же не отличаются определенностью, а главное, однозначностью. Ведь «невидимость» массивной компоненты не обязательно объясняется ее «чернодырной» природой. Звезды обнаруживают удивительное разнообразие характеристик, особенно в двойных системах (см. § 14). Кроме того, нельзя исключить возможность того, что вокруг «подозреваемой» звезды имеется пылевое облако, делающее ее невидимой.

Значительно более перспективными представляются попытки обнаружить черные дыры в тесных двойных системах по рентгеновскому излучению одной из компонент. В предыдущем параграфе мы уже довольно подробно обсуждали рентгеновские пульсары, являющиеся нейтронными звездами, излучающими в рентгеновском диапазоне по причине аккреции. Можно себе представить совершенно таким же образом тесную двойную систему, одной из компонент которой является черная дыра. «Оптическая» компонента у такой системы может заполнять свою полость Роша и мощная струя газа будет падать на черную дыру. Так как струя газа несет с собой большой вращательный момент, то она образует вокруг черной дыры быстро вращающийся газовый диск. Частицы, образующие диск, будут вращаться вокруг черной дыры приблизительно по закону Кеплера. Из-за вязкости частицы диска будут непрерывно терять вращательный момент и часть их будет постепенно «оседать» в черную дыру. В процессе такого оседания, как можно показать, газ будет излучать во внешнее пространство часть своей гравитационной потенциальной энергии.

В процессе оседания газа в черную дыру температура внутренних частей диска станет очень высокой. Такой диск может быть мощным источником рентгеновского излучения. Мощность и спектр излучения в первом приближении такие же, как и от нейтронных звезд — рентгеновских пульсаров. Разумеется, рентгеновское излучение при аккреции газа на черную дыру не может носить характер строго периодических импульсов (как у Геркулеса Х-1 и Центавра Х-3). Но ведь далеко не все рентгеновские пульсары — нейтронные звезда — излучают «секундные» импульсы. Этому может, например, помешать сильное рассеяние или «неблагоприятная» (по отношению к земному наблюдателю) ориентация оси вращения нейтронной звезды. В то же время рентгеновский источник — горячий компактный диск, вращающийся вокруг нейтронной звезды, может из-за своего орбитального движения вокруг «оптической компоненты» периодически затмеваться точно так же, как и рентгеновский пульсар.


Еще от автора Иосиф Самуилович Шкловский
Эшелон

И. С. Шкловский. Эшелон (невыдуманные рассказы). – М.: Изд-во «Новости», 1991. – 224 с. – ISBN 5-7020-0376-4.Имя Иосифа Шкловского (1916-1985) – выдающегося советского астрофизика – хорошо известно и в Советском Союзе, и за его пределами. Однако эта книга – не научное исследование, а короткие новеллы-воспоминания. Все они свидетельствуют о незаурядной личности автора, его правдивости, честности, а зачастую и резкой бескомпромиссности позиции.


Полемика по проблемам SETI

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Вселенная, жизнь, разум

Посвящена проблеме возможности существования жизни, в том числе и разумной, на других планетных системах. Вместе с тем книга содержит достаточно полное и доступное изложение результатов современной астрофизики. Книга получила первую премию на конкурсе Общества «Знание» на лучшую научно-популярную книгу. Пятое издание было переработано в соответствии с новой точкой зрения автора. Шестое издание, подготовленное к публикации Н. С. Кардашевым и В. И. Морозом, дополнено тремя статьями И. С. Шкловского.Для широкого круга читателей со средним образованием.(Примечание OCR: в книге около 120 рисунков и множество таблиц.


Сборник статей

Уже не раз на страницах журнала мы обсуждали проблемы, связанные с поиском внеземных цивилизаций, попытками вступить с ними в контакт, гипотезами о следах, оставленных на Земле пришельцами из космоса. Часто при этом упоминалось имя видного советского астрофизика, члена-корреспондента АН СССР И. С. Шкловского, автора известной книги "Вселенная, Жизнь, Разум", неоднократно переиздававшейся и переведенной на многие языки. Велик вклад исследователя в научную постановку проблемы CETI — связи, с внеземными цивилизациями.


Рекомендуем почитать
Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Ньютон. Закон всемирного тяготения. Самая притягательная сила природы

Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.


Климатическая наука: наблюдения и модели

Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.


Неоконченная история искусственных алмазов

В книге рассказывается о замечательном успехе современной науки — о том, как человек, проникнув в тайны состава и строения самого твердого природного минерала — алмаза, сумел воспроизвести его. История этого научного подвига насчитывает около трехсот лет. Сейчас искусственные технические алмазы широко используются в промышленности, продолжаются попытки вырастить крупные ювелирные камни — бриллианты.


Занимательная астрофизика

Книга в популярной и занимательной форме знакомит читателей с наиболее интересными проблемами современной астрофизики, с не обычными физическими объектами в космосе: пульсарами, квазарами, радиогалактиками, черными: дырами, источниками: рентгеновского и гамма-излучения, а также с наиболее интересными вопросами современной космологии. В книге рассказывается о новых методах познания Вселенной, об открытиях, сделанных в последние годы. Специальный раздел посвящен проблеме поиска разумной жизни во Вселенной.Для иллюстрации вопросов астрофизики авторы в ряде случаев прибегают к помощи научной фантастики.Под редакцией В, М.