Эта теория, по мнению ее сторонников, позволяет снять с повестки дня и проблему недостаточного количества атомов Li-7, и проблему избыточного количества атомов Li-6. Теоретик Максим Поспелов из Perimeter Institute in Waterloo (Онтарио, Канада), решение «проблемы лития» связывает с гипотезой о существовании стаусов (staus) — тяжелых партнеров тау-лептонов. Расчеты Поспелова показывают, что стаусы — если допустить, что они существуют — будут образовывать связанные состояния с ядрами Be-7. Этот факт весьма важен, поскольку теория нуклеосинтеза объясняет появление лития соединением ядра Be-7 с нейтроном, в результате чего возникают ядра изотопа Li-7 и рождаются протоны. Если же Be-7 будет образовывать связанные состояния со стаусами, то в этом состоянии он, согласно расчетам, будет захватывать протоны. Образующееся в результате этого гибридное состояние ядра Be-8 и стауса должно распасться на два ядра He-4. А это, в свою очередь, означает, что теория суперсимметрии не предсказывает те процессы нуклеосинтеза, которые и приводят к появлению во Вселенной атомов лития.
Другое «суперсимметричное» решение «проблемы лития» предлагает физик-теоретик Карстен Джедамзик из французского университета Montpellier. Его расчеты показывают, что теорией суперсимметрии допускается существенно более раннее — по сравнению с теорией нуклеосинтеза — образование ядер Li-7. В это случае ядра Li-7 имеют шанс быстро разрушиться, поскольку температура Вселенной тем выше, чем меньше ее возраст.
При всем этом мы не должны забывать, что для самой теории суперсимметрии экспериментальные подтверждения на данный момент отсутствуют. Это обстоятельство специально подчеркивает Андреас Корн, считающий более правдоподобными такие объяснения «проблемы лития», которые основаны на анализе происходящего в недрах звезд. В целом же «проблема лития» ставит перед космологией проблему выбора: либо признать, что уровень собственного понимания физики звезд явно недостаточен, либо отказаться от Стандартной модели. Пока же космологи ожидают начала активных исследований на Большом Адронном Коллайдере и соответственно подтверждения (или опровержения) теории суперсимметрии. Все происходящее отлично иллюстрирует идеи профессора Хелге Крага и его слова о той роли, которую «инструментальная техника сыграла в формировании наших представлений о Вселенной в целом».
Где заканчивается космос
Специалистам из Университета Калгари удалось точно вычислить, где расположена граница между земной атмосферой и открытым космосом. Как выяснилось, она проходит на высоте 118 километров от поверхности нашей планеты.
С помощью детектора ионов канадские специалисты одновременно отследили относительно слабые ветра в верхних слоях земной атмосферы и мощные потоки заряженных частиц в космосе. Скорость последних может достигать тысячи километров в час.
Собирать информацию о границе земной атмосферы крайне сложно: аэростаты не могут подняться до этого уровня, а для спутников это слишком низко. Всего лишь во второй раз ученым удалось прямо измерить потоки заряженных частиц в этой области, и впервые были учтены другие факторы вроде ветра, отмечает участник проекта Дэвид Кнудсен.
Канадцы надеются, что их открытие поможет установить, какая энергия попадает в земную атмосферу из космоса.
Вопрос о «космической границе», однако, остается открытым. Например, иногда считается, что астронавт побывал в космосе, если поднялся на высоту свыше 80 километров. В то же время Международная авиационная федерация, устанавливающая стандарты в аэронавтике, определила границу на высоте 100 километров над поверхностью Земли. Некогда американский специалист в области воздухоплавания Теодор фон Карман подсчитал, что на этой высоте из-за разреженной атмосферы невозможно использовать обычные летательные аппараты.
США официально не признают данный стандарт. Его применение усложнило бы контроль за использованием спутников и других объектов, находящихся на орбите, поясняют в NASA. В самом Национальном управлении США по аэронавтике и исследованию космического пространства границу провели на высоте 76 миль (122 километра). Именно там шаттлы при возвращении на Землю переходят на маневрирование с помощью управляемых поверхностей.
Существует также мнение, что открытый космос начинается лишь в 21 миллионе километров от Земли — там, где гравитация нашей планеты перестает быть доминирующей.
Расплата за прямохождение
Несмотря на то, что антропологам давно было известно, что возможность ходить на двух ногах и способность с легкостью лазать по деревьям требуют совершенно противоположной конструкции суставов скелета, многие ученые указывали на смешение этих признаков в строении конечностей доисторических предков Homo sapiens.
Джереми де Силва, ученый из Мичиганского университета (США), провел исследование, благодаря которому смог точно установить, что предки человека сильно уступали современным шимпанзе в умении карабкаться по деревьям. В своей работе ученый наблюдал за тем, как современные виды человекоподобных обезьян шимпанзе, как наиболее близких родственников человека, карабкаются по деревьям.