Знакомьтесь, информационные технологии - [19]

Шрифт
Интервал

Можно считать, что и здесь достигается органолептический предел , и дальнейшее улучшение качества изображения не будет фиксироваться человеком.

* * *

Что и как может сообщить компьютер – понятно. Теперь надо донести до него информацию. И тут придется ответить на следующий вопрос.

Как общаться с компьютером?

Наряду с ручным вводом данных в компьютер (с помощью клавиатуры и мыши), в настоящее время используются и другие методы: с помощью сканеров, дигитайзеров и т. д. Уже сегодня эти способы ввода влияют не только на производство (существенно упрощая и сокращая время ввода), но и на развлечения (например, обработка фотографий переходит на качественно иной уровень). И искусство также не осталось в стороне – так анимационные фильмы теперь можно снимать не только быстрее, но и с новыми художественными возможностями – не зря же Норштейн не применяет технические новации – это меняет сам фильм.

Современные средства ввода все больше ориентируются непосредственно на человека – компьютер должен понимать человеческий голос и воспринимать сказанное, узнавать образ человека и соответственно на него реагировать. То есть необходимо решить вопрос о вводе в компьютер звуковой и видеоинформации. Такие средства уже созданы и применяются в различных сферах использования компьютеров. Современные программы «понимают» значения нескольких тысяч слов, что позволяет вводить в компьютеры, на которых эти программы установлены, различные команды. Такие компьютеры работают, в частности, на самолетах. При занятых руках пилота такая организация ввода становится актуальной и эффективной. Для этих работ используются не самые мощные компьютеры. Более сложную задачу решают программы, позволяющие вести осмысленный диалог с человеком. Некоторые американские компании, продающие авиабилеты, используют компьютеры для приема заказов. Человек звонит в агентство, и программа выясняет у него, куда ему надо лететь, в какое время, какой класс и т. д. В соответствии с полученным запросом подготавливается предложение. Здесь главная задача – не распознавание слов, а адекватное понимание смысла, ибо одна и та же мысль может быть выражена различными словами. Таким образом, задача ввода звуковой информации практически решена на современных компьютерах.

Видеоинформация имеет значительно больший объем, чем звуковая. Но проблема ее ввода также решается не на самых мощных компьютерах. Выпускается много видеокамер, специально предназначенных для оперативного ввода видеоизображения в компьютер. Современные цифровые камеры позволяют передавать через стандартный порт данные в компьютер с качеством телевизионного сигнала. А программы обработки, в том числе и оцифровки, видеоданных работают уже давно и на существенно более слабых (чем большинство современных) компьютерах. Появившиеся в начале 2000 года видеопроцессоры вместе с процессорами, работающими на частоте от 600 МГц, обеспечивают даже кодирование видеоинформации в формате MPEG-2 в реальном времени.

* * *

Можно сказать, что мощность современных компьютеров вполне достаточна для ввода как звуковой, так и видеоинформации. Теперь мы знаем, что производительность современного компьютера позволяет решать многие задачи. Но не все. И потому необходимо выяснить

Что можно ожидать от компьютера дальше?

Конечно, для получения видеоизображения «неулучшаемого» качества требуется наличие не только соответствующих свойств монитора, но и возможность вывода на экран высококачественного изображения, которое сегодня ассоциируется с фотореалистическим качеством: героями игр должны стать реальные люди, ведущие себя реалистично («как в кино»). Для обеспечения фотореалистичного изображения необходимы значительные вычислительные мощности как центрального, так и видеопроцессора. В настоящее время проводится наращивание мощностей обоих устройств: увеличивается частота работы процессоров и в них встраиваются дополнительные функции.

В 1999 году произошло очередное продвижение: сразу несколько фирм выпустили видеопроцессор со встроенным геометрическим сопроцессором, что значительно повысило производительность компьютера. Так, видеопроцессор GeForce 256 компании NVIDIA Corporation, состоящий из 23 млн. транзисторов, позволяет прорисовать 15 млн. полигонов и сформировать 480 млн. пикселов в секунду. Производительность видеопроцессоров увеличилась столь значительно, что это стало предметом некоторого косвенного конфликта между производителями центральных и графических процессоров. В конце 1999 года фирмы Intel и AMD провели тестирование компьютеров со своими новыми высокопроизводительными процессорами. По окончании этих тестов обе фирмы сообщили, что оптимальными (для работы с «быстрыми» процессорами) являются видеокарты, выполненные на видеопроцессорах предыдущего поколения. Причина конфликта понятна – новые геометрические процессоры обеспечивают столь высокую производительность, что требования к центральному процессору снижаются. А как утверждают специалисты по маркетингу, «продаются мегагерцы» и потребность в них снижается.

* * *

Уже сегодня имеется некоторый