Живой учебник геометрии - [2]
Если первая из отбрасываемых цифр больше 4, то последнюю остающуюся цифру увеличивают на 1. Например, 267,86 округляют в 267,9, в 268 или в 270.
Но в тех случаях, когда отбрасывается т о л ь к о цифра 5 (или 5 с последующими нулями), принято округлять число так, чтобы последняя остающаяся цифра оказывалась ч е т н о й. Например, 4,25 округляют в 4,2, число 3750 – в 3800.
Результат с л о ж е н и я или в ы ч и т а н и я не должен оканчиваться значащими цифрами в тех разрядах, которых нет хотя бы в одном из данных чисел. Если такие цифры получаются, их следует заменять нулями. (Нули, стоящие между значащими цифрами, также считаются значащими).
П р и м е р ы:
Результат умножения и деления не должен состоять из большего числа значащих цифр, чем их имеется в том из данных чисел, которое содержит наименьшее число значащих цифр.
П р и м е р ы:
Число значащих цифр с т е п е н и или корня не должно превышать числа их в основании или в подкоренном количестве.
П р и м е р ы:
1572= 24 600 [вместо 24 649]
5,813= 196 [вместо 196,122 941]
?329 = 18,1 [вместо 18,1384]
?0,638 = 0,861 [вместо 0,86088].
Указанные правила выполнения действий относятся только к о к о н ч а т е л ь н ы м результатам выкладок. Если же выполняемое действие не окончательное, т. е. если с полученным результатом предстоит выполнять еще и другие действия, то в результате оставляют одной цифрой больше, чем указано в предыдущих правилах. Например вычисление:
выполняют так:
36 ? 1,4 = 50,4 (а не 50)
50,4: 3,4 = 15.
Этими правилами следует руководствоваться не только при собственных выкладках, но и при пользовании готовыми результатами из таблиц.
Первый концентр
I. ПРЯМАЯ ЛИНИЯ И ЕЕ ИЗМЕРЕНИЕ
§ 1. Прямая линия
Среди линий мы нередко встречаем такие, которые имеют форму туго натянутой нити. Линии эти называются п р я м ы м и линиями, а каждая часть их – о т р е з к о м прямой линии. Для удобства часто говорят коротко: «прямая», «отрезок», без слова «линия».
Линии иного вида носят другие названия. Те не прямые линии, которые составлены из отрезков прямой (черт. 1), называются л о м а н ы м и. Все прочие линии – не прямые и не ломаные – называются кривыми (черт. 2).
Прямые линии чертят на бумаге, пользуясь линейкой.
Через одну точку можно провести сколько угодно прямых линий. Но через д в е точки сразу может проходить не более о д н о й прямой: нельзя через две точки провести больше одной прямой так, чтобы проведенные линии не сливались в одну. Этим свойством прямых линий пользуются для перекалывания узоров, составленных из прямых линий. Предположим, что вы желаете изобразить в точности узор черт. 3a, т. е. желаете, как говорят, «снять с него копию». Вы можете поступить так: подложить под узор чистую бумагу и проколоть иглой (или ножкой циркуля) конечные точки всех его линий. У вас получится на чистой бумаге то, что. вы видите на черт. 3b. Если затем, глядя на узор; вы соедините точки черт. 3b по линейке прямыми линиями – у вас получится точная копия узора; так как между двумя точками можно провести только одну прямую линию, то ясно, что отрезки, соединяющие точки черт. 3b, должны быть те самые, что и на черт. 3a.
На классной доске мы можем чертить прямые линии помощью шнура, натертого мелом. Натянув его между теми двумя точками, через которые мы желаем провести прямую, приподнимают немного шнур посредине и отпускают: шнур отпечатывает на доске свою форму, т. е. прямую линию. Это называется «отбить» прямую. Плотники, отбивая прямые на бревнах, брусьях или досках, натирают шнур не мелом, а углем.
Чтобы обозначить прямую линию на поле, на лугу, в лесу, вообще, как говорят, «на местности», ее не прочерчивают на земле, а втыкают лишь на ее концах по шесту («вехе»): этого достаточно, потому что через две точки (вехи) может проходить только одна прямая.
Чтобы не указывать на чертеже пальцем, о каком отрезке идет речь, ставят у его концов буквы; желая указать этот отрезок, называют буквы, стоящие у его конечных точек; этого достаточно, потому что через две точки может проходить только одна прямая. Левый стоячий отрезок на черт. 4, например, надо называть АО, нижний лежачий – DС, и т. д. Для таких dобозначений принято упо треблять п р о п и с н ы е буквы латинского алфавита.
Другой способ обозначения отрезков состоит в том, что возле их середины ставят одну малую букву. Например, прямую АВ можно назвать просто b, a AD – а, и т. п.
Называя л о м а н у ю линию, надо перечислить по порядку буквы, поставленные у концов всех ее отрез ков. Например, говорят «ломаная ABCOD» (найдите ее на черт. 4).
Буквы для обозначения точек и линий принято в математике употреблять не русские, а латинские. Они не слишком отличаются от русских, поэтому к употреблению их легко привыкнуть.
Повторительные вопросы
Начертите несколько прямых, ломаных и кривых линий. – Сколько прямых может проходить через одну точку? А через две? – Во скольких местах могут пересекаться две прямые? – Как перекалывают узоры? – Как «отбивают» прямые линии? – Как отмечают их на местности? – Как обозначают прямые линии буквами? Как обозначают ломаные линии? – Когда употребляют прописные буквы и когда – малые?
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Книга написана известным популяризатором и педагогом и содержит парадоксы, головоломки, задачи, опыты, замысловатые вопросы и рассказы из области физики. Книга по характеру изложения и по объему знаний, предполагаемых у читателя, рассчитана на учащихся средней школы и на лиц, занимающихся самообразованием в таком же объеме.
В книгу Якова Перельмана «Головоломки и развлечения» вошли занимательные задачи, опыты, рассказы и игры, помогающие проверить свои знания по математике и физике. Здесь встретятся задачи о часах, числовые головоломки, развлечения со спичками и магические квадраты, сумма чисел сторон которых удивляла астрологов и алхимиков древности и обладала, по их мнению, волшебными свойствами. Для среднего школьного возраста.
Настоящая книга, написанная выдающимся популяризатором науки Я.И.Перельманом, знакомит читателя с отдельными вопросами астрономии, с ее замечательными научными достижениями, рассказывает в увлекательной форме о важнейших явлениях звездного неба. Автор показывает многие кажущиеся привычными и обыденными явления с совершенно новой и неожиданной стороны и раскрывает их действительный смысл.Задачи книги – развернуть перед читателем широкую картину мирового пространства и происходящих в нем удивительных явлений и возбудить интерес к одной из самых увлекательных наук – к науке о звездном небе.Для всех, кто интересуется астрономией, в том числе учителей, лекторов, руководителей кружков, любознательных школьников.
«Головоломки. Задачи. Фокусы. Развлечения» — увлекательная книга, полная волшебства.Автор книги, известный популяризатор науки Яков Исидорович Перельман, поможет читателям разглядеть неожиданные стороны как будто знакомых предметов, откроет секрет феноменальной памяти, научит интересным фокусам, предложит много занимательных игр и развлечений.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.