Жар холодных числ и пафос бесстрастной логики - [31]

Шрифт
Интервал

круглым; и как бы мы тщательно ни применяли наш циркуль, окружности всегда будут до некоторой степени несовершенными и неправильными. Это наталкивает на предположение, что всякое точное размышление имеет дело с идеалом, противостоящим чувственным объектам. Естественно сделать еще один шаг вперед и доказывать, что мысль благороднее чувства, а объекты мысли более реальны, чем объекты чувственного восприятия. Чистая математика также льет воду на мельницу мистических доктрин об отношении времени к вечности, ибо математические объекты, например числа (если они вообще реальны), являются вечными и вневременными. А подобные вечные объекты могут в свою очередь быть истолкованы как мысли бога. Отсюда платоновская доктрина, согласно которой бог является геометром, а также представление сэра Джемса Джинса о том, что бог предается арифметическим занятиям»[10]. Здесь обрисован один из источников разбираемой философской установки. Дальнейшие мы укажем ниже.

Проследим, в чем выражался не «общий» платонизму о котором говорит Рассел в приведенном отрывке, а именно математический платонизм. Эта разновидность платонизма очень четко проявилась в следующих словах одного из виднейших математиков прошлого века — Шарля Эрмита (1822—1901): «Я верю, что числа и функций анализа не являются произвольным созданием нашего разума; я думаю, что они существуют вне нас в силу той же необходимости, как и объекты реального мира, и мы их встречаем идя их открываем и изучаем точно так, как это делают физики, химики или зоологи»[11]. Эти слова означают, что числа и функции похожи не на приборы и инструменты, — скажем, на счетчик Гейгера или масс-спектограф Астона, которые придумали люди» а на виды растений или животных, скажем, на баобаб или кенгуру, которые существуют фактически, независимо от желания человека от знания человека об их существовании и которые человек со временем лишь обнаруживает.

Первая причина таких представлений указана Расселом — это впечатление вечности, неизменности и совершенства, которое производят математические объекты. Ключ к пониманию второй причины содержится в приведенной цитате из Эрмита, в его словах «существуют в силу необходимости». Смысл, который обычно вкладывается в эти слова, достаточно прост. Если мы, скажем, возводим двойку в десятую степень, то получаем число 1024 абсолютно независимо от нашего желания — необходимым образом; значит, тот факт, что 2>10 = 1024, имел место и до того как мы начали вычисление, и даже до того как появились люди на Земле. Возьмем другой, более «научный» пример. В свое время перед математиками стояла задача о решении общего уравнения третьей степени, но попытки справиться с ней не увенчивались успехом. Наконец, в 1545 году Джироламо Кардано (1501—1576) в упоминавшейся уже нами (с. 34) работе «Великое искусство...» изложил (открытый ранее Н. Тартальей) метод нахождения корней произвольного кубического уравнения[12]. Проблема была закрыта.

Поставим вопрос: существовали ли корни у произвольного кубического уравнения до Тартальи и Кардано? По-видимому, в каком-то смысле, да, ибо если бы он их «изобрел», то почему они обладают именно данными свойствами и не могут обладать свойствами, несовместимыми с установленными этими математиками?

Как мы видим, ситуация не так проста, как может показаться на первый взгляд. В XIX столетии, когда математические работы полились рекой, ощущение «открывания» стало особенно сильным и сказалось на математическом мировоззрении.

Работая изо дня в день с числами, функциями и уравнениями, любой математик всегда воспринимает их как внешнюю данность. Для «математического платоникам эта данность становится абсолютной. Но, как ни странно, на определенном этапе развития науки эта разновидность догматизма сыграла свою положительную роль. На это обратил внимание уже цитировавшийся нами Ласло Кальмар, который указал на то, что «платонистская» объективизация математических идей «защищала их от отторжения здравым смыслом как иллюзорных и стимулировала развитие математики до той поры, пока математики и философы не смогли лучше понять сущность — и пользу абстракции»[13].

К тому времени, когда была создана теория дедекиндовых сечений, точка зрения математиков на то, какие объекты в их науке более всех «существуют сами по себе», вырисовалась совершенно отчетливо. Математики по молчаливому соглашению выделили главную «платоновскую идею» - математический объект, занявший в иерархии рассматриваемых ими существований центральное положение. Этим объектом стало «множество». В математической науке наступила эпоха теоретико-множественного мышления.

Действительно, «множественный» подход пронизывал теорию Дедекинда. Теория сечений становится убедительным определением действительных чисел, если идея множества — неважно, конечного, бесконечного, построенного фактически или только обрисованного самыми общими словами, представляется чем-то абсолютно ясных, конкретно данным и существующим в той же мере, в какой существует написанная на бумаге буква; ибо она сводит действительные числа к двум классам сечения, а классы — это множества, мыслимые как некие единичные «вещи».


Еще от автора Борис Владимирович Бирюков
Теория смысла Готлоба Фреге

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Социальная мифология, мыслительный дискурс и русская культура

Бирюков Борис Владимирович — доктор философских наук, профессор, руководитель Межвузовского Центра изучения проблем чтения (при МГЛУ), вице-президент Русской Ассоциации Чтения, отвечающий за её научную деятельность.Сфера научных интересов: философская логика и ее история, история отечественной науки, философия математики, проблемы оснований математики. Автор и научный редактор более пятисот научных трудов, среди них книги, входящие в золотой фонд отечественной историко-научной и логической мысли. Является главным научным редактором и вдохновителем научного сборника, издаваемого Русской Ассоциацией Чтения — «Homo legens» («Человек читающий»).


Быть русскими — наша судьба

Новая книга В.Н. Тростникова, выходящая в издательстве «Грифон», посвящена поискам ответов на судьбоносные вопросы истории России.За последнее десятилетие мы восстановили и частную собственность, и свободу слова, ликвидировали «железный занавес»… Но Запад по-прежнему относится к нам необъективно и недружественно.Ожесточаться не нужно. Русские – самый терпеливый народ в мире, и мы должны перетерпеть и несправедливое отношение к себе Запада. Ведь придёт час, когда Запад сам поймёт необходимость заимствовать у нас то, что он потерял, а мы сохранили, – Христа.Книга рассчитана на широкий круг читателей.


Вера и разум. Европейская философия и ее вклад в познание истины

Автор книги – известный религиозный философ – стремится показать, насколько простая, глубокая и ясная вещь «настоящая философия» – не заказанное напористой и самоуверенной протестантской цивилизацией её теоретическое оправдание, а честное искание Истины – и как нужна такая философия тем русским людям, которые по своей натуре нуждаются в укреплении веры доводами разума.В форме увлекательных бесед показаны не только высоты и бездны европейской философии, но и значительные достижения русской философской школы, уходящей своими корнями в православное мировосприятие.


Понимаем ли мы Евангелие?

Виктор Николаевич Тростников (род. 1928 г.), писатель, ученый, философ. Профессор Российского Православного Университета им. св. Иоанна Богослова. Автор более ста работ по различным разделам физики и математики, а также книг по научной апологетикеКнига содержит размышления автора об опыте осмысления Вечных Истин в свете современного знания.


Трактат о любви. Духовные таинства

Цель «Трактата о любви» В.Н. Тростникова – разобраться в значении одного-единственного, но часто употребляемого нами слова «любовь». Неужели этому надо посвящать целое исследование? Да, получается так, потому что слово-то одно, а значений у него много. Путь истинной любви обрисован увлекательно, понятно и близко молодому и просвещенному современному читателю, который убедится, что любовь в ее высшем проявлении есть любовь к Богу. Это книга – для всех любящих сердец.


Рекомендуем почитать
Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.