Завоевание природы - [30]

Шрифт
Интервал

Таким образом Галилей построил то, что мы теперь называем зрительной трубой. Когда он направил свою трубу на небо, то он увидел горы на луне, пятна на солнце, увидел, что некоторые сравнительно близкие к нам светила иногда принимают подобно луне форму серпа или полукруга. Около планеты Юпитер Галилей заметил четыре луны, которые вращались кругом планеты. Одним словом, с помощью зрительной трубы Галилей увидел то, чего никак нельзя рассмотреть простым глазом.

Наблюдения Галилея показали, что появившееся незадолго перед этим учение Коперника правильно. Учение же Коперника состояло в том, что не солнце и другие небесные светила вращаются вокруг земли, как это кажется глазу, а наоборот: сама земля вращается, как волчок, кружась в то же время вокруг солнца. Галилей начал защищать учение Коперника, что очень не понравилось имевшим тогда большую силу попам. Ведь это учение подрывало доверие к "священному писанию", по которому выходило, что земля — самая главная часть вселенной. Попы начали преследовать Галилея, засадили его в тюрьму, грозили сжечь на костре и заставили в конце концов публично "отречься от ереси". Но и после отречения попы не оставили Галилея в покое, преследуя его до самой смерти всяческими стеснениями.

Но никакие преследования не могли, конечно, изменить того, что открывали человеку инструменты, направляемые на небо. Со времени Галилея эти инструменты постоянно совершенствовались. В них начали также с успехом применять кроме выпуклых и вогнутых стекол и вогнутые зеркала. Увеличивались размеры инструментов, для помещения их строились особые башни с подвижными куполами; для передвижения инструментов и вращения купола употреблялись особые механизмы и машины. О величине современных телескопов (так называются инструменты для наблюдения неба) можно судить хотя бы по рисунку 44, на котором изображен телескоп, собирающийся на известном заводе Цейсса в Германии.

Инструменты для наблюдения неба позволили человеку увидеть сотни тысяч невидимых простым глазом звезд. Инструменты дали возможность точно изучить движения небесных светил, рассмотреть подробнее вид ближайших к нам светил. Так, например, поверхность видимой с земли стороны луны изучена, пожалуй, лучше, чем некоторые места поверхности самой земли. А ведь луна находится от нас на расстоянии в 380000 километров! Теперь мы твердо знаем, что наша земля совсем не главная часть вселенной, а всего лишь ничтожная песчинка, затерянная в ее безграничных пространствах. Мы знаем, что земля вместе с небольшим числом других планет вращается вокруг солнца, которое, в свою очередь, не стоит неподвижно, а тоже несется в бесконечные дали мирового пространства. Мы знаем, что звезды, эти серебристые искорки, рассыпанные но ночному небу, в действительности являются огромными солнцами, многие из которых гораздо больше нашего. Мы знаем, что эти искорки удалены от нас на такие невообразимые расстояния, что свет от самой близкой из них идет до земли почти четыре года, а от других — десятки, сотни и даже тысячи лет. Многое еще мы узнали о небе, и все это благодаря тому материалу, который дало нам применение инструментов для его изучения.

Скажем здесь еще несколько слов об одном из таких инструментов. Он позволяет узнавать, из каких веществ состоят небесные светила. Этот инструмент — спектроскоп (рис. 45).

Главной составной частью спектроскопа является стеклянная трехгранная призма (рис. 46). Если через такую призму пропустить солнечный луч, а за призмой поставить, например, лист белой бумаги, то на нем получится разноцветная полоска. Такая же полоска получится, если вместо солнечного света взять свет лампы, свечи и любого раскаленного добела твердого или жидкого тела. Эта разноцветная полоска называется в науке спектром. Совсем, однако, другого вида получается спектр, когда берут свет какого-нибудь газообразного вещества. Если, например, пропустит!» через призму свет от раскаленных паров особого металла натрия, то на белой бумаге будет видна только яркая желтая линия. Какое бы газообразное вещество мы ни взяли, оно всегда даст не сплошной спектр, а одну или несколько отдельных цветных линий.

Теперь интересно вот что. Если свет раскаленного твердого или жидкого вещества проходит сначала, скажем, через раскаленные пары натрия, а потом уже через призму, то получится такая картина. Первое вещество даст обычную радужную полоску, сплошной спектр, но он будет в одном месте пересечен темной линией. И как раз в том месте, где раньше находилась желтая линия натрия. При прохождении света раскаленного твердого или жидкого вещества через какой-нибудь другой газ, в сплошном спектре появляются темные линии как раз в тех местах, где были цветные линии этого газа.

Что же оказывается, когда солнечный свет наблюдают в спектре скопе? Оказывается, что его сплошной радужный спектр пересечен целым рядом темных линий. Остается, значит, измерить положение каждой из этих линий, чтобы узнать — от какого вещества эта линия получилась. А так как свет от раскаленного огненно жидкого солнечного ядра проходит через раскаленную газообразную оболочку солнца, то мы, значит, узнаем, из каких веществ состоит эта оболочка.


Еще от автора Борис Георгиевич Андреев
Спичке – сто лет

Книга знакомит юного читателя с историей спички, подробно останавливаясь на работе современной спичечной фабрики. Истории спички предпосылается краткий обзор других приспособлений для добывания огня, существовавших до появления спички.


Рекомендуем почитать
Юный техник, 2014 № 12

Популярный детский и юношеский журнал.


Наука и техника, 2007 № 05 (12)

«Наука и техника» — ежемесячный научно-популярный иллюстрированный журнал широкого профиля.Официальный сайт http://naukatehnika.com.


Юный техник, 2014 № 04

Популярный детский и юношеский журнал.


Юный техник, 2013 № 09

Популярный детский и юношеский журнал.


Уничтожай фашистские танки из противотанкового ружья

"Стрелок из противотанкового ружья, тебе вручено советским народом могущественное средство для уничтожения фашистских танков — противотанковое ружье. Чтобы выполнить с честью эту задачу, надо отлично знать свое оружие, ловко и сноровисто действовать им, умело использовать местность, знать сильные и слабые места противника, точно выполнять поставленную тебе командиром задачу, согласованно действовать с товарищами.".


Современная архитектура Японии. Традиции восприятия пространства

Япония отличается особым отношением к традиционным ценностям своей культуры. Понимание механизмов актуализации и развития традиций, которыми пользуется Япония, может открыть новые способы сохранения устойчивости культуры, что становится в настоящее время все более актуальной проблемой для многих стран мира. В качестве центральных категорий, составляющих основу пространственного восприятия архитектуры в Японии, выделяется триада: пустота, промежуток, тень. Эти категории можно считать инвариантами культуры этой страны, т. к.