Занимательно о химии - [32]
Это было рождение новой науки — электрохимии.
В руках ученых появился прибор, который позволял в течение длительного времени получать электрический ток. До того момента, пока в «вольтовом столбе» не прекратятся химические процессы.
Заманчивым казалось выяснить, как действует электричество на самые различные вещества.
Англичане врач Карлейль и инженер Никольсон выбрали в качестве объекта изучения воду. К тому времени у химиков было достаточно оснований утверждать, что вода состоит из водорода и кислорода. Но окончательно подтвердить эту догадку на опыте как-то не удавалось.
Ученые использовали электрическую батарею, состоящую из 17 элементов Вольта. Она давала очень сильный ток. И вода бурно стала разлагаться на два газа — водород и кислород, начался ее электролиз. Именно так называют процесс разложения веществ электрическим током.
Сотни и тысячи доменных печей выплавляют сталь и чугун во всем мире. Экономисты в разных странах скрупулезно подсчитывают, сколько миллионов тонн металла приготовлено в этом году, делают прогнозы, сколько выплавят в следующем.
И те же экономисты сообщают нам потрясающий факт: каждая восьмая домна работает впустую. Ежегодно около 12 процентов добычи металла бесславно теряется для человечества, приносится в жертву беспощадному врагу…
Этот враг попросту именуется ржавлением. Наука называет его коррозией металлов.
Гибнут не только черные, гибнут и цветные металлы — медь, олово, цинк.
Коррозия — это окисление металлов. Ведь большинство из них не очень-то устойчивы в свободном состоянии. И даже на воздухе блестящая поверхность металлического предмета со временем покрывается зловещими разноцветными разводами окисей.
Окисляясь, металлы и сплавы утрачивают свои многие ценные качества. Ухудшается прочность и эластичность, снижается теплопроводность и электропроводность.
Раз начавшись, процесс коррозии не останавливается на полпути. Пусть не сразу, но «рыжий дьявол» до конца поедает металлическое изделие. Молекулы кислорода попадают на поверхность металла. Образуются первые молекулы окисла. Возникает, как говорят, окисная пленка. Она достаточно рыхлая, и через нее, как сквозь сито, «просеиваются» атомы металла, чтобы немедленно окислиться. И наоборот, через поры пленки лезут в глубь металла кислородные молекулы и продолжают свою разрушительную работу.
В более агрессивном химическом окружении процесс коррозии течет стремительнее. Хлор, фтор, сернистый газ, сероводород не менее опасные враги металлов. Когда металл корродирует под действием газов, химики называют это явление газовой коррозией.
А различные растворы? И они страшны для металла. Например, обыкновенная морская вода. Громадные океанские суда приходится время от времени отводить в доки на капитальный ремонт: менять изъеденную коррозией обшивку днища и бортов.
Впрочем, послушайте-ка историю о том, как однажды жестоко просчитался один американский миллионер.
Он пожелал иметь лучшую яхту в мире. Заказал проект, придумал волнующее название «Зов моря». Денег не жалел. Исполнители из кожи вон лезли, чтобы угодить заказчику. Оставалось немногое — отделать каюты.
Но яхта так и не вышла в море. Море ее не дозвалось. Корпус и днище яхты незадолго до торжественного дня оказались разрушенными коррозией.
Почему? Да потому, что коррозия — это процесс электрохимический.
Строители яхты хотели обшить ее днище так называемым монель-металлом — сплавом из никеля и меди. Их решение было правильным: ведь этот сплав, хотя и дорог, но зато очень устойчив к коррозии в морской воде. Устойчив, но механически не очень прочен. И многие детали судна пришлось делать из других металлов — специальных сталей.
Это и погубило яхту. В местах соприкосновения монель-металла и стали возник мощный гальванический элемент, и днище моментально начало разрушаться. Финал был печален.
Огорчение миллионера не поддавалось описанию, а строителям яхты пришлось навсегда запомнить один из законов коррозии: ее скорость резко увеличивается, если в основной металл добавляются другие, которые образуют с ним гальванический элемент.
Много веков стоит в Дели удивительная колонна. Потому удивительная, что сделана она из чистейшего железа. Время над ней не властно. Века проходят, а колонна все выглядит как новенькая, не ржавеет. Словно коррозия изменила здесь своим привычкам…
Как древнейшим металлургам удалось выплавить чистое железо — полнейшая загадка. Кое-кто из горячих умов утверждал, что не человеческих рук это дело. Дескать, пришельцы из иных миров воздвигли этот обелиск в память своего пребывания на Земле.
Но если лишить колонну загадочного ореола ее происхождения, остается чрезвычайно важный для химиков факт: чем чище металл, тем медленнее разрушается он коррозией. Хочешь успешно бороться с ней, применяй как можно более чистые металлы.
И не только одна чистота здесь существенна. Важно, чтобы поверхность металлической детали была обработана тщательно. Ведь отдельные «бугорки» или «впадины» могут, оказывается, играть роль посторонних включений. Ученым и инженерам удалось достичь почти идеальной гладкости поверхности. Изделия с такой поверхностью уже нашли применение в конструкциях ракет и космических кораблей.
Наше поколение стало свидетелем необычайной победы человеческого разума — начала проникновения в космос. Перед молодежью открываются увлекательные, полные заманчивости перспективы межпланетных путешествий и открытий. Но есть еще и на нашей «обжитой» планете Земля много неизученных «белых пятен», среди них почти неизвестный на всю его глубину Мировой океан с его подводными горами и впадинами, со своим растительным и животным миром, со своими физическими законами. В изучении его большую пользу приносит гидроакустика — сравнительно молодая наука, имеющая большое будущее. Эта наука имеет большое прикладное значение.
Оказалось, достаточно всего одного поколения медиков, чтобы полностью изменить взгляд на генетические заболевания. Когда-то они воспринимались как удар судьбы, а сейчас во многих случаях с ними можно справиться. Некоторые из них почти исчезли, как, например, талассемия, отступившая на Кипре благодаря определенным политическим мерам, или болезнь Тея–Сакса, все менее распространенная у евреев-ашкеназов. Случаи заболевания муковисцидозом также сократились. Генетические заболевания похожи на родовое проклятие, то появляющееся, то исчезающее от поколения к поколению.
Книга Рюди Вестендорпа, профессора геронтологии Лейденского университета и директора Лейденской академии жизненной активности и старения, анализирует процесс старения и его причины в широком аспекте современных научных знаний. Чему мы можем научиться от людей, которые оставались здоровыми всю свою исключительно долгую жизнь? Помогут ли нам ограничения в пище или гормоны, витамины и минеральные вещества? Как сохранить свои жизненные силы, несмотря на лишения и болезни? Автор систематизирует факторы, влияющие на постоянно растущую продолжительность жизни людей нашего времени. В книге подробно обсуждаются социальные и политические последствия этого жизненного взрыва.
Если вы читали о динозаврах в детстве, смотрели «Мир юрского периода» и теперь думаете, что все о них знаете, – в этой книге вас ждет много сюрпризов. Начиная c описания мегалозавра в XIX в. и заканчивая открытиями 2017 г., ученые Даррен Нэйш и Пол Барретт рассказывают о том, что сегодня известно палеонтологам об этих животных, и о том, как компьютерное моделирование, томографы и другие новые технологии помогают ученым узнать еще больше. Перед вами развернется история длиной в 150 миллионов лет – от первых существ размером с кошку до тираннозавра и дальше к современным ястребам и колибри.
В книге рассказывается, как родилась и развивалась физиология высшей нервной деятельности, какие непостижимые прежде тайны были раскрыты познанием за сто с лишним лет существования этой науки. И о том, как в результате проникновения физиологии в духовную, психическую деятельность человека, на стыке физиологии и математики родилась новая наука — кибернетика.
Если бы одна книга смогла вместить все о человеке, наверное, отпала бы нужда в книгах. Прочитав эту, вы узнаете новое о глубинных пружинах настроений и чувств; о веществах, взрывающих и лечащих психику; о скрытых резервах памяти; о гипнозе и тайных шифрах сновидений; о поисках и надеждах исследователей и врачей; кое-что о йогах и о том, что может сделать со своей психикой человек, если сам ею не слишком доволен.
В первой книге «Мир животных» (автор задумал написать пять таких книг) рассказывается о семи отрядах класса млекопитающих: о клоачных, куда помещают ехидн и утконосов; об австралийских и южноамериканских сумчатых; насекомоядных, к которым относятся тенреки, щелезубы и всем известные кроты и землеройки; о шерстокрылах; хищных; непарнокопытных, сюда относятся лошадиные, тапиры и носороги, и, наконец, о парнокопытных: оленях, антилопах, быках, козлах и баранах.Второй выпуск посвящен остальным двенадцати отрядам класса млекопитающих: рукокрылым (летучие мыши и крыланы); приматам (полуобезьяны, обезьяны и человек), неполнозубым (ленивцы, муравьеды, броненосцы), панголинам (ящеры), зайцеобразным (пищухи, зайцы, кролики), грызунам, китообразным, ластоногим, трубкозубым, даманам, сиренам и хоботным.Третья книга рассказывает о птицах.
Четвертая книга Игоря Акимушкина из серии «Мир животных» рассказывает о рыбообразных (миногах и миксинах), акулах, скатах и химерах; костных рыбах; земноводных (лягушках, жабах и тритонах) и пресмыкающихся (крокодилах, ящерицах, змеях и черепахах).
Акимушкин Игорь Иванович (1929-1993)Ученый, популяризатор биологии. Автор более 60 научно-художественных и детских книг.Родился в Москве в семье инженера. Окончил биолого-почвенный факультет МГУ (1952). Печатается с 1956.Автор научно-популярных книг о жизни животных (главным образом малоизученных): «Следы невиданных зверей», «Тропою легенд», «Приматы моря», «Трагедия диких животных» и др.Его первые книги для детей появились в 1961 г.: «Следы невиданных зверей» и «Тропою легенд: Рассказы о единорогах и василисках».Для малышей Игорь Иванович написал целый ряд книжек, используя приемы, которые характерны для сказок и путешествий.