Занимательная физика. Книга 2 - [23]
Если бы входное отверстие колодца находилось на одном из плоскогорий Южной Америки, на высоте, положим, двух километров, а противоположный конец туннеля приходился бы на уровне океана, то человек, который по неосторожности свалился бы в американское отверстие, достиг бы противоположного конца с такой скоростью, что вылетел бы из него на высоту двух километров.
А если бы оба конца колодца приходились на уровне океана, можно было бы подать летящему человеку руку в момент появления его у отверстия, когда скорость полета равняется нулю. В предыдущем же случае следовало бы, напротив, с опаскою посторониться от чересчур стремительного путешественника».
В свое время в С.-Петербурге появилась брошюра со странным заглавием: «Самокатная подземная железная дорога между С.-Петербургом и Москвой. Фантастический роман пока в трех главах, да и то неоконченных». Автор этой брошюры, А. А. Родных, предлагает остроумный проект, с которым интересно познакомиться любителю физических парадоксов.
Проект состоит «в проведении 600-километрового туннеля, который должен соединить обе наши столицы по совершенно прямой подземной линии. Таким образом, впервые явилась бы возможность для человечества совершать путь по прямой, а не ходить кривыми путями, как это было до сих пор». (Автор хочет сказать, что все наши дороги, подчиняясь кривизне земной поверхности, следуют по дугам, между тем как проектируемый туннель пройдет по прямой линии — по хорде.)
Такой туннель, если бы его можно было прорыть, имел бы удивительное свойство, каким не обладает ни одна дорога в мире. Оно заключается в том, что любой экипаж в подобном туннеле должен двигаться сам собой. Вспомним наш подземный колодец, пробуравливающий земной шар. Ленинградо-московский туннель — тот же колодец, только просверленный не по диаметру, а по хорде. Правда, при взгляде на рис. 46 может казаться, что туннель прорыт горизонтально и что поезду, следовательно, нет причины катиться по нему в силу тяжести. Но это лишь обман зрения: проведите мысленно радиусы к концам туннеля (направление радиуса есть направление отвеса); вы поймете тогда, что туннель прорыт не под прямым углом к отвесу, т. е. не горизонтально, а наклонно.
Рисунок 46. Если бы прорыть туннель между Ленинградом и Москвой, то поезда мчались бы в нем туда и обратно под собственным весом, без паровозов.
В таком косом колодце всякое тело должно качаться, увлекаемое силою тяжести, вперед и назад, все время прижимаясь ко дну. Если в туннеле устроить рельсы, то железнодорожный вагон будет сам катиться по ним: вес заменит тягу паровоза. Вначале поезд будет двигаться очень медленно. С каждой секундой скорость самокатного поезда будет возрастать; вскоре она дойдет до невообразимой величины, так что воздух в туннеле будет уже заметно мешать его движению. Но забудем на время об этом досадном препятствии, мешающем осуществлению многих заманчивых проектов, и проследим за поездом дальше. Домчавшись до середины туннеля, поезд будет обладать такой огромной скоростью, — во много раз быстрее пушечного снаряда! — что с разбега докатится почти до противоположного конца туннеля. Если бы не трение, не было бы и этого «почти»: поезд без паровоза сам доехал бы из Ленинграда в Москву. Продолжительность перелета в один конец, как показывает расчет, — та же, что и для падения сквозь туннель, прорытый по диаметру: 42 минуты 12 секунд. Странным образом она не зависит от длины туннеля; путешествия в туннеле Москва — Ленинград, Москва — Владивосток или Москва — Мельбурн продолжались бы одинаковое время[25].
То же повторялось бы с любым другим экипажем: дрезиной, каретой, автомобилем и т. д. Поистине сказочная дорога, которая, сама оставаясь неподвижной, мчит по себе все экипажи от одного конца до другого, и притом с невообразимой быстротой!
(Интересующиеся математической стороной этой задачи могут найти подробный разбор ее в моей статье, напечатанной в журнале «Математика и физика в школе», 1936, № 3, стр. 106–107.)
Взгляните на рис. 47, изображающий три способа проведения туннелей, и скажите, какой из них прорыт горизонтально?
Рисунок 47. Три способа прокладывать туннели сквозь горы.
Не верхний и не нижний, а средний, идущий по дуге, которая во всех точках образует прямые углы с направлением отвесных линий (или земных радиусов). Это и есть горизонтальный туннель, — его изгиб вполне соответствует кривизне земной поверхности.
Большие туннели прорывают обыкновенно так, как показано вверху: по прямым линиям, касательным к земной поверхности в крайних точках туннеля. Такой туннель сначала идет немного вверх, затем вниз. Он представляет то удобство, что вода не застаивается в нем, а сама стекает к краям.
Если бы туннель рылся строго горизонтально, то длинный туннель имел бы дугообразную форму. Вода не имела бы стремления вытекать из него, так как в каждой его точке находилась бы в равновесии. Когда такой туннель длиннее 15 км (Симплонский, например, имеет в длину 20 км), то, стоя у одного выхода, нельзя видеть другого: луч зрения упирается в потолок, так как средняя точка такого туннеля более чем на 4 м возвышается над его конечными точками.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Книга написана известным популяризатором и педагогом и содержит парадоксы, головоломки, задачи, опыты, замысловатые вопросы и рассказы из области физики. Книга по характеру изложения и по объему знаний, предполагаемых у читателя, рассчитана на учащихся средней школы и на лиц, занимающихся самообразованием в таком же объеме.
В книгу Якова Перельмана «Головоломки и развлечения» вошли занимательные задачи, опыты, рассказы и игры, помогающие проверить свои знания по математике и физике. Здесь встретятся задачи о часах, числовые головоломки, развлечения со спичками и магические квадраты, сумма чисел сторон которых удивляла астрологов и алхимиков древности и обладала, по их мнению, волшебными свойствами. Для среднего школьного возраста.
Настоящая книга, написанная выдающимся популяризатором науки Я.И.Перельманом, знакомит читателя с отдельными вопросами астрономии, с ее замечательными научными достижениями, рассказывает в увлекательной форме о важнейших явлениях звездного неба. Автор показывает многие кажущиеся привычными и обыденными явления с совершенно новой и неожиданной стороны и раскрывает их действительный смысл.Задачи книги – развернуть перед читателем широкую картину мирового пространства и происходящих в нем удивительных явлений и возбудить интерес к одной из самых увлекательных наук – к науке о звездном небе.Для всех, кто интересуется астрономией, в том числе учителей, лекторов, руководителей кружков, любознательных школьников.
«Головоломки. Задачи. Фокусы. Развлечения» — увлекательная книга, полная волшебства.Автор книги, известный популяризатор науки Яков Исидорович Перельман, поможет читателям разглядеть неожиданные стороны как будто знакомых предметов, откроет секрет феноменальной памяти, научит интересным фокусам, предложит много занимательных игр и развлечений.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.
Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.