Занимательная физика. Книга 2 - [16]
Вы. Как можно сомневаться в том, что мы неподвижны, а вертится комната! Ведь если бы нашу качель в самом деле опрокинуть вверх дном, то мы с вами не повисли бы вниз головой, а выпали бы из нес. Но мы не падаем. Значит, вертится не качель, а комната.
Я. Однако вспомните, что вода из быстро кружащегося ведерка не выливается, хотя оно и опрокидывается вверх дном (стр. 55). Велосипедист в «чертовой петле» (см. далее, стр. 65) также не падает, хотя и едет вниз головой.
Вы. Если так, то вычислим центростремительное ускорение и убедимся, достаточно ли оно для того, чтобы мы не выпали из качели. Зная наше расстояние от оси вращения и число оборотов в секунду, мы легко определим по формуле…
Я. Не трудитесь вычислять. Устроители «чертовой качели», зная о нашем споре, предупредили меня, что число оборотов будет вполне достаточно, чтобы явление объяснялось по-моему. Следовательно, вычисление не решит нашего спора.
Вы. Однако я не потерял надежды вас переубедить. Видите, вода из этого стакана не выливается на пол… Впрочем, вы и тут сошлетесь на опыт с вращающимся ведерком. Хорошо же: я держу в руке отвес, — он все время направлен к нашим ногам, т. е. вниз. Если бы вертелись мы, а комната оставалась неподвижной, отвес был бы все время обращен к полу, т. е. вытягивался бы то к нашим головам, то вбок.
Я. Ошибаетесь: если мы вертимся с достаточной скоростью, то отвес все время должен отбрасываться от оси вдоль радиуса вращения, т. е. к нашим ногам, как мы и наблюдаем.
Теперь позвольте вам посоветовать, как одержать победу в этом споре. Надо взять с собою на «чертову качель» пружинные весы, положить на их чашку гирю, например в 1 кг, и следить за положением указателя: он все время будет показывать один и тот же означенный на гире вес, именно — один килограмм. Это и есть доказательство неподвижности качели.
В самом деле: если бы мы вместе с пружинными весами описывали круги около оси, то на гирю, кроме силы тяжести, действовал бы также центробежный эффект, который в нижних точках пути увеличивал бы вес гири, а в верхних уменьшал бы его; мы должны были бы замечать, что гиря то становится тяжелее, то почти ничего не весит. А раз этого не замечается, значит, вращается комната, а не мы.
Один предприниматель в Америке устроил для развлечения публики очень забавную и поучительную карусель в форме шарообразной вращающейся комнаты. Люди внутри нее испытывают такие необыкновенные ощущения, какие мы считаем возможными разве только во сне или в волшебной сказке.
Вспомним сначала, что испытывает человек, стоящий на быстро вращающейся круглой платформе.
Рисунок 34. Что испытывает человек на краю вращающейся платформы.
Рисунок 35. Человек прочно стоит на наклонном конце вращающейся платформы.
Вращательное движение стремится отбросить человека наружу; чем дальше стоите вы от центра, тем сильнее будет клонить и тянуть вас наружу. Если закроете глаза, вам будет казаться, что вы стоите не на горизонтальном полу, а на наклонной плоскости, на которой с трудом сохраняете равновесие. Это станет понятно, когда рассмотрим, какие силы действуют здесь на наше тело (рис. 34). Действие вращения увлекает наше тело наружу, тяжесть тянет вниз; оба движения, складываясь по правилу параллелограмма, дают результирующее действие, которое наклонено вниз. Чем быстрее вращается платформа, тем это результирующее движение больше и направляется более отлого.
Представьте же себе теперь, что край платформы загнут вверх и вы стоите на этой отогнутой наклонной части (рис. 35). Если платформа неподвижна, вы в таком положении не удержитесь, а сползете или даже опрокинетесь. Другое дело, если платформа вращается: тогда эта наклонная плоскость станет для вас, при известной скорости, как бы горизонтальной, потому что результирующее обоих увлекающих вас движений направится тоже наклонно, под прямым углом к отогнутой части платформы[15].
Если вращающейся платформе придать такую кривизну, чтобы при определенной скорости ее поверхность была в каждой точке перпендикулярна к результирующей, то помещенный на пол человек будет чувствовать себя во всех ее точках, как на горизонтальной плоскости. Математическим вычислением найдено, что такая кривая поверхность есть поверхность особого геометрического тела — параболоида. Ее можно получить, если быстро вращать вокруг вертикальной оси стакан, до половины налитый водой: тогда вода у краев поднимется, в центре опустится, и поверхность ее примет форму параболоида.
Если вместо воды налить в стакан растопленный воск и продолжать вращение до тех пор, пока воск не остынет, то затвердевшая поверхность его даст нам точную форму параболоида. При определенной скорости вращения такая поверхность является для тяжелых тел как бы горизонтальной: шарик, положенный в любую ее точку, не скатывается вниз, а остается на этом уровне (рис. 36).
Теперь легко будет понять устройство «заколдованного» шара.
Дно его (рис. 37) составляет большая вращающаяся платформа, которой придана кривизна параболоида. Хотя вращение благодаря скрытому под платформой механизму совершается чрезвычайно плавно, все же люди на платформе испытывали бы головокружение, если бы окружающие предметы не перемещались вместе с ними; чтобы не дать возможности наблюдателю обнаружить движение, платформу помещают внутри большого шара с непрозрачными стенками, который вращается с такой же скоростью, как и сама платформа.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Книга написана известным популяризатором и педагогом и содержит парадоксы, головоломки, задачи, опыты, замысловатые вопросы и рассказы из области физики. Книга по характеру изложения и по объему знаний, предполагаемых у читателя, рассчитана на учащихся средней школы и на лиц, занимающихся самообразованием в таком же объеме.
В книгу Якова Перельмана «Головоломки и развлечения» вошли занимательные задачи, опыты, рассказы и игры, помогающие проверить свои знания по математике и физике. Здесь встретятся задачи о часах, числовые головоломки, развлечения со спичками и магические квадраты, сумма чисел сторон которых удивляла астрологов и алхимиков древности и обладала, по их мнению, волшебными свойствами. Для среднего школьного возраста.
Настоящая книга, написанная выдающимся популяризатором науки Я.И.Перельманом, знакомит читателя с отдельными вопросами астрономии, с ее замечательными научными достижениями, рассказывает в увлекательной форме о важнейших явлениях звездного неба. Автор показывает многие кажущиеся привычными и обыденными явления с совершенно новой и неожиданной стороны и раскрывает их действительный смысл.Задачи книги – развернуть перед читателем широкую картину мирового пространства и происходящих в нем удивительных явлений и возбудить интерес к одной из самых увлекательных наук – к науке о звездном небе.Для всех, кто интересуется астрономией, в том числе учителей, лекторов, руководителей кружков, любознательных школьников.
«Головоломки. Задачи. Фокусы. Развлечения» — увлекательная книга, полная волшебства.Автор книги, известный популяризатор науки Яков Исидорович Перельман, поможет читателям разглядеть неожиданные стороны как будто знакомых предметов, откроет секрет феноменальной памяти, научит интересным фокусам, предложит много занимательных игр и развлечений.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.
Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.