Занимательная физика. Книга 2 - [11]
На речных пароходных пристанях подростки останавливают этим приемом подходящие к пристаням пароходы с сотней пассажиров. Помогает им не феноменальная сила их рук, а трение веревки о сваю.
Знаменитый математик XVIII века Эйлер установил зависимость силы трения от числа оборотов веревки вокруг сваи. Для тех, кого не пугает сжатый язык алгебраических выражений, приводим эту поучительную формулу Эйлера:
Здесь F — та сила, против которой направлено наше усилие f. Буквой e обозначено число 2,718… (основание натуральных логарифмов), k — коэффициент трения между канатом и тумбой. Буквой α обозначен «угол навивания», т. е. отношение длины дуги, охваченной веревкой, к радиусу этой дуги.
Применим формулу к тому случаю, который описан у Жюля Верна. Результат получится поразительный. Силой F в данном случае является сила тяги судна, скользящего по доку. Вес судна из романа известен: 50 тонн. Пусть наклон стапеля 0,1; тогда на канат действовал не полный вес судна, а 0,1 его, т. е. 5 тонн, или 5000 кг.
Далее, величину k — коэффициента трения каната о железную тумбу — будем считать равной 1/3. Величину α легко определим, если примем, что Матифу обвил канат вокруг тумбы всего три раза. Тогда
подставив все эти значения в приведенную выше формулу Эйлера, получим уравнение
Неизвестное f (т. е. величину необходимого усилия) можно определить из этого уравнения, прибегнув к помощи логарифмов:
Lg 5000 = lg f + 2n lg 2,72, откуда f = 9,3 кг.
Итак, чтобы совершить подвиг, великану достаточно было тянуть канат с силой лишь 10 килограммов!
Не думайте, что эта цифра — 10 кг — только теоретическая и что на деле потребуется усилие гораздо большее. Напротив, наш результат даже преувеличен: при пеньковой веревке и деревянной свае, когда коэффициент трения k больше, усилие потребуется до смешного ничтожное. Лишь бы веревка была достаточно крепка и могла выдержать натяжение, — тогда даже слабый ребенок мог бы, навив веревку 3–4 раза, не только повторить подвиг жюль-верновского богатыря, но и превзойти его.
В обыденной жизни мы, сами не подозревая, часто пользуемся выгодой, на которую указывает нам формула Эйлера. Что такое узел, как не бечевка, навитая на валик, роль которого в данном случае играет другая часть той же бечевки? Крепость всякого рода узлов — обыкновенных, «беседочных», «морских», завязок, бантов и т. п. — зависит исключительно от трения, которое здесь во много раз усиливается вследствие того, что шнурок обвивается вокруг себя, как веревка вокруг тумбы. В этом нетрудно убедиться, проследив за изгибами шнурка в узле. Чем больше изгибов, чем больше раз бечевка обвивается вокруг себя — тем больше «угол навивания» и, следовательно, тем крепче узел.
Бессознательно пользуется тем же обстоятельством и портной, пришивая пуговицу. Он много раз обматывает нить вокруг захваченного стежком участка материи и затем обрывает ее; если только нитка крепка, пуговица не отпорется. Здесь применяется уже знакомое нам правило: с увеличением числа оборотов нитки в прогрессии арифметической крепость шитья возрастает в прогрессии геометрической.
Если бы не было трения, мы не могли бы пользоваться пуговицами: нитки размотались бы под их тяжестью и пуговицы отвалились бы.
Вы видите, как разнообразно и порой неожиданно проявляется трение в окружающей нас обстановке. Трение принимает участие, и притом весьма существенное, там, где мы о нем даже и не подозреваем. Если бы трение внезапно исчезло из мира, множество обычных явлений протекало бы совершенно иным образом.
Очень красочно пишет о роли трения французский физик Гильом:
«Всем нам случалось выходить в гололедицу: сколько усилий стоило нам удерживаться от падения, сколько смешных движений приходилось нам проделывать, чтобы устоять! Это заставляет нас признать, что обычно земля, по которой мы ходим, обладает драгоценным свойством, благодаря которому мы сохраняем равновесие без особых усилий. Та же мысль возникает у нас, когда мы едем на велосипеде по скользкой мостовой или когда лошадь скользит по асфальту и падает. Изучая подобные явления, мы приходим к открытию тех следствий, к которым приводит трение. Инженеры стремятся по возможности устранить его в машинах — и хорошо делают. В прикладной механике о трении говорится как о крайне нежелательном явлении, и это правильно, — однако лишь в узкой, специальной области. Во всех прочих случаях мы должны быть благодарны трению: оно дает нам возможность ходить, сидеть и работать без опасения, что книги и чернильница упадут на пол, что стол будет скользить, пока не упрется в угол, а перо выскользнет из пальцев.
Трение представляет настолько распространенное явление, что нам, за редкими исключениями, не приходится призывать его на помощь: оно является к нам само.
Трение способствует устойчивости. Плотники выравнивают пол так, что столы и стулья остаются там, куда их поставили. Блюда, тарелки, стаканы, поставленные на стол, остаются неподвижными без особых забот с нашей стороны, если только дело не происходит на пароходе во время качки.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Книга написана известным популяризатором и педагогом и содержит парадоксы, головоломки, задачи, опыты, замысловатые вопросы и рассказы из области физики. Книга по характеру изложения и по объему знаний, предполагаемых у читателя, рассчитана на учащихся средней школы и на лиц, занимающихся самообразованием в таком же объеме.
В книгу Якова Перельмана «Головоломки и развлечения» вошли занимательные задачи, опыты, рассказы и игры, помогающие проверить свои знания по математике и физике. Здесь встретятся задачи о часах, числовые головоломки, развлечения со спичками и магические квадраты, сумма чисел сторон которых удивляла астрологов и алхимиков древности и обладала, по их мнению, волшебными свойствами. Для среднего школьного возраста.
Настоящая книга, написанная выдающимся популяризатором науки Я.И.Перельманом, знакомит читателя с отдельными вопросами астрономии, с ее замечательными научными достижениями, рассказывает в увлекательной форме о важнейших явлениях звездного неба. Автор показывает многие кажущиеся привычными и обыденными явления с совершенно новой и неожиданной стороны и раскрывает их действительный смысл.Задачи книги – развернуть перед читателем широкую картину мирового пространства и происходящих в нем удивительных явлений и возбудить интерес к одной из самых увлекательных наук – к науке о звездном небе.Для всех, кто интересуется астрономией, в том числе учителей, лекторов, руководителей кружков, любознательных школьников.
«Головоломки. Задачи. Фокусы. Развлечения» — увлекательная книга, полная волшебства.Автор книги, известный популяризатор науки Яков Исидорович Перельман, поможет читателям разглядеть неожиданные стороны как будто знакомых предметов, откроет секрет феноменальной памяти, научит интересным фокусам, предложит много занимательных игр и развлечений.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.
Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.