Загадки океана - [22]

Шрифт
Интервал

Но субдукция дает не только положительный эффект. Столкновение литосферных плит приводит к землетрясениям. Иногда очень сильным, когда погибает много людей. Пример — землетрясение в Мексике в 1985 г.

Плита Кокос движется в восточном направлении. Она поддвигается под Северо — Американскую плиту у западного побережья Мексики. Плиты движутся со средней скоростью 6 см/год навстречу друг другу. Поддвиг Кокосовой плиты происходит под ту часть Северо — Американской плиты, которая является участком дна Тихого океана в этом районе. При переме щении плит возникают большие механические напряжения, сосредоточенные на наиболее прочных отрезках.

19 сентября 1985 г. в 7 ч 18 мин на глубине 15 км под г. Ласаро — Карденас произошло вспарывание одного из наиболее напряженных участков на границе между двумя плитами. В этом месте края плит разошлись в течение нескольких секунд почти на 2 метра! Сила подземного толчка достигла 8,1 балла по шкале Рихтера. Но разрушения, как сообщала печать, были сравнительно небольшими. Ускорение движения вблизи эпицентра было в пределах 15 % от ускорения силы тяжести (g). Известно, что при землетрясениях, происшедших раньше в других районах, ускорение достигало единицы g, т. е. 9,81 м/с>2. В следующую минуту импульс распространился на 170 км вдоль разлома, через 2 мин с небольшим он прошел 360 км и достиг г. Мехико.

В Мехико живет около 18 млн. человек. Здесь колебания Земли вызвали разрушение многих сотен больших зданий и гибель тысяч жителей. Наиболее сильные колебания были отмечены в плотно застроенном высокими домами центре города. Трагический эффект был особенно велик из‑за неожиданного механического резонанса, возникшего в глинистом грунте, на котором стоит город.

Большая часть города расположена на территории высохшего древнего озера, от которого остался толстый слой глины. Собственный период механических колебаний этого слоя оказался близким к 2 с. Примерно тот же период имели сейсмические колебания, возникшие при вспарывании. В результате под городом возник резонанс, значительно усиливший катастрофу.

Особенно пострадали те здания, собственный период колебаний которых был близок к резонансному.

Каждый этаж дает период колебаний примерно в ОД с, поэтому здания в 20 этажей теоретически имели резонансный период в 2 с. Разрушилось 300 зданий высотой от 6 до 15 этажей. Это свидетельствует о размытости кривой резонанса, что наблюдается всегда при недостаточно добротном резонаторе.

Ученые пока еще не научились точно предсказывать землетрясения. Если бы удалось контролировать механические напряжения в месте контакта двух плит, то, вероятно, можно было бы получить полезную информацию, предупреждающую о надвигающейся катастрофе.

Однако проникнуть в глубину коры океана на полтора десятка километров очень трудно. Ученые еще только осваивают технику сверхглубокого бурения (скважина на Кольском полуострове).

Недавно установлено, что столкновение литосферных плит не только грозит землетрясением, но и влияет на климат. Влияние это обнаруживается за несколько месяцев до катастрофы. В районах, где ожидалось сильное землетрясение, наблюдались резкие аномалии погоды. Над очагами будущих катастроф была задолго отмечена максимальная солнечная радиация, наибольшее количество ясных дней, самая высокая температура воздуха и скорость ветра, минимальная облачность, влажность и наименьшее количество осадков.

Например, перед катастрофическим землетрясением в Ашхабаде 1948 г. прошедшей зимой было самое большое число часов солнечного сияния за много лет. Второй максимум этого параметра наблюдался зимой 1967–1968 г., перед вторым ашхабадским землетрясением.

М. Р. Милькисом собран обширный материал по наблюдениям 120 метеостанций, подтверждающий появление погодных аномалий и в других районах Туркмении и Узбекистана перед большими землетрясениями.

Итак, необходимо наблюдать за погодой, сравнивать с тем, какой она была раньше, и делать соответствующие выводы. Однако сделать правильный вывод не всегда просто.

В 1986 г. на Черноморском побережье Кавказа стояло необычайно жаркое лето. Несколько месяцев не было дождей. Относительная влажность воздуха временами достигала необычайно низких значений. Случались и сильные ветры. Можно ли по этим данным с уверенностью сказать, что будет сильное землетрясение? Думаю, что нет. Ведь такая погода случалась здесь и раньше, примерно один раз в 5–6 лет. И не было землетрясений. Следовательно, необходима еще дополнительная информация.

М. Р. Милькис считает, что погодные аномалии в областях, где подготавливаются землетрясения, связаны с тепловыми и электрическими явлениями, возникающими в процессе подготовки сейсмического удара.

Сходная точка зрения была высказана раньше другими исследователями. 4 марта 1977 г. за несколько часов до сильного землетрясения в Карпатах академик М. А. Садовский совместно со своими сотрудниками Г. А. Соболевым и Н. М. Мигуновым зарегистрировали повышенное количество электрических разрядов на расстоянии около 300 км от будущего эпицентра землетрясения. Направление прихода сигналов было близким к эпицентру. Более 80 % зарегистрированных импульсов отклонялись от направления на эпицентр не более чем на 15°. Наблюдалось свечение атмосферы вблизи эпицентра. Одновременно были отмечены многочисленные сбои в работе ЭВМ и телеграфной связи.


Еще от автора Николай Всеволодович Вершинский
Окно в подводный мир

Научно-популярная книга о применении телевидения при освоении морских глубин.


Рекомендуем почитать
Наука «Звёздных Войн»

«Звёздные Войны» — это уникальная смесь научной фантастики и сказки. Мы удивляемся разнообразию существ и технологий, возможностям джедаев и тайне Силы. Но что из описанного в «Звёздных Войнах» основано на реальной науке? Можем ли мы увидеть, как некоторые из необыкновенных изобретений материализуются в нашем мире? «Наука «Звёздных Войн» рассматривает с научной точки зрения различные вопросы из вселенной «Звёздных Войн», относящиеся к военным действиям, космическим путешествиям и кораблям, инопланетным расам и многому другому.


Интернет животных. Новый диалог между человеком и природой

Еще в древности люди познавали мир, наблюдая за животными и анализируя их поведение. Теперь же, в XXI веке, мы можем делать это совсем на другом уровне. Интернет животных – важнейшее достижение человечества – решает сразу несколько проблем. Во-первых, при помощи него мы становимся ближе к животному миру и лучше понимаем братьев наших меньших. Во-вторых, благодаря этой сенсорной сети мы получаем доступ к новым знаниям и открытиям. В книге представлен подробный анализ «фундаментальных перемен, которые сыграют не меньшую роль для человеческого самосознания, чем открытие жизни на других планетах».


Иван Александрович Стебут, 1833–1923

Настоящая книга посвящена жизни и деятельности выдающегося русского агронома И. А. Стебута (1833— 1923). Свыше полувека он занимал наиболее видное место среди деятелей русской агрономии. С именем Стебута связаны последние годы жизни первого сельскохозяйственного высшего учебного заведения в нашей стране — Горыгорецкого земледельческого института (ныне Белорусская сельскохозяйственная академия) и первые тридцать лет жизни Петровской академии (ныне Московская сельскохозяйственная Академия имени К. А. Тимирязева), в которой он возглавлял кафедру земледелия.


Знание-сила, 1997 № 01 (835)

Ежемесячный научно-популярный и научно-художественный журнал для молодежи.


Знание-сила, 1998 № 03 (849)

Ежемесячный научно-популярный научно-художественный журнал для молодежи.


Знание-сила, 1998 № 02 (848)

Ежемесячный научно-популярный и научно-художественный журнал дли молодежи.