Загадки и диковинки в мире чисел - [8]

Шрифт
Интервал

Учитель глядит в ответы и видит 75 и 63.

– Гм!., странно… Сложить 5 и 3, а потом делить 540 на 8? Так, что ли? Нет, не то!

– Решайте же! – говорит он Пете.

– Ну, чего думаешь? Задача-то ведь пустяковая, – говорит Удодов Пете. – Экий ты дурак, братец! Решите уж вы ему, Егор Алексеич.

Егор Алексеич [репетитор] берет в руки грифель и начинает решать. Он заикается, краснеет, бледнеет.

– Эта задача, собственно говоря, алгебраическая, – говорит он. – Ее с иксом и игреком решить можно. Впрочем, можно и так решить. Я вот разделил… Понимаете? Или, вот что. Решите мне эту задачу к завтраму… Подумайте…

Петя ехидно улыбается. Удодов тоже улыбается. Оба они понимают замешательство учителя. Ученик VII класса еще пуще конфузится, встает и начинает ходить из угла в угол.

– И без алгебры решить можно, – говорит Удодов, протягивая руку к счетам и вздыхая. – Вот, извольте видеть…

Он щелкает на счетах, и у него получается 75 и 63, что и нужно было.

– Вот-с… по-нашему, по-неученому.

Эта сценка с задачей, заставляющая нас смеяться над конфузом несчастного репетитора, задает нам, в свою очередь, три новые задачи. А именно:

1. Как предполагал репетитор решить задачу алгебраически?

2. Как должен был ее решить Петя?

3. Как решил ее отец Пети на счетах «по-неучено-му»? На первые два вопроса, вероятно, без труда ответят если не все, то, во всяком случае, – многие читатели нашей книжки. Третий вопрос не так прост. Но рассмотрим три наши задачи по порядку.

1. Семиклассник-репетитор готов был решать задачу «с иксом и игреком», будучи уверен, что задача – «собственно говоря, алгебраическая». И он, надо думать, легко справился бы с ней, прибегнув к помощи системы уравнений, – только не неопределенных, как ему показалось. Составить два уравнения с двумя неизвестными для данной задачи очень нетрудно; вот они:

х + у=38, 5х + 3у = 540,

где × и у — числа аршин синего и черного сукна.

2. Однако задача довольно легко решается и арифметически. Если бы вам пришлось решать ее, она, конечно, не затруднила бы вас. Вы начали бы с предположения, что все купленное сукно было синее, – тогда за всю партию в 138 аршин синего сукна пришлось бы уплатить 5 × 138 = 690 рублей; это на 690–540= 150 рублей больше того, что было заплачено в действительности. Разница в 150 рублей указывает, что в партии имелось и более дешевое черное сукно по 3 рубля аршин. Дешевого сукна было столько, что из двухрублевой разницы на 1 аршине составилось 150 рублей: очевидно, число аршин черного сукна определится, если разделить 150 на 2. Получаем ответ – 75; вычтя эти 75 аршин из общего числа 188 аршин, узнаем, сколько было синего сукна: 138 – 75 = 63. Так и должен был решать задачу Петя.

3. На очереди у нас третий вопрос: как решил задачу Удодов-старший?

В рассказе говорится об этом очень кратко: «Он щелкает на счетах, и у него получается 75 и 63, что и нужно было».

В чем же, однако, состояло это «щелканье на счетах»? Другими словами, каков способ решения задачи с помощью счетов?

Разгадка такова: злополучная задача решается на счетах тем же приемом, что и на бумаге, – тем же рядом арифметических действий. Но только выполнение их значительно упрощается благодаря преимуществам, которые наши русские счеты предоставляют всякому, умеющему с ними обращаться. Очевидно, отставной губернский секретарь Удодов хорошо умел считать на счетах, потому что их косточки быстро, без помощи алгебры, открыли ему то, чего репетитор-семиклассник добивался узнать «с иксом и игреком». Вот какие действия должен был проделать на счетах Петин отец.

Прежде всего ему нужно было, как мы знаем, умножить 138 на 5. Для этого он, по правилам действий на счетах, умножил сначала 138 на 10, – т. е. просто перенес 138 одной проволокой выше, – а затем разделил это число пополам, опять-таки на счетах же. Деление начинают снизу: откидывают половину косточек, отложенных на каждой проволоке; если число косточек на данной проволоке нечетное, то выходят из затруднения, «раздробляя» одну косточку этой проволоки на 10 нижних. В нашем, например, случае делят 1380 пополам так: на нижней проволоке, где отложено 8 косточек, откидывают 4 косточки (4 десятка), на средней проволоке из 3 косточек откидывают 1, а оставшуюся 1 косточку заменяют мысленно десятью нижними и делят пополам, добавляя 5 десятков к косточкам нижней; на верхней проволоке раздробляют одну косточку, прибавляя 5 сотен к косточкам средней проволоки. В результате на верхней проволоке совсем не остается косточек; на средней 1+5 = 6 сотен; на нижней 4 + 5 = 9 десятков. Итого, 690 единиц. Выполняется все это, конечно, автоматически.

Далее Удодову-старшему нужно было из 690 вычесть 540. Как проделывается это на счетах – всем известно.

Наконец, полученную разность, 150, оставалось разделить пополам: Удодов откинул из 5 косточек (десятков) 2, отдав 5 единиц нижнему ряду косточек; потом из 1 косточки на проволоке сотен отдал 5 десятков нижнему ряду: получилось 7 десятков и 5 единиц, т. е. 75.

Все эти простые действия выполняются на счетах гораздо скорее, чем тут описано.

Русские счеты

Есть много полезных вещей, которых мы не умеем ценить только потому, что они, постоянно находясь у нас под руками, превратились в самый обыкновенный предмет нашего домашнего обихода. К числу таких недостаточно ценимых вещей принадлежат, бесспорно, и наши конторские счеты – русская народная счетная машина, представляющая собою лишь видоизменение знаменитого «абака», или «счетной доски» наших отдаленных предков. Все древние народы – египтяне, греки, римляне – употребляли при вычислениях счетный прибор «абак», очень походивший на наши десятикосточковые счеты [9] . В средние века вплоть до XVI века подобные приспособления были широко распространены в Европе. Но в наши дни видоизмененный абак – счеты – сохранился, кажется, только в России да в Китае (семикосточковые счеты, «суан-пан»). Запад не знает десятикосточковых счетов, – вы не найдете их ни в одном магазине Европы; быть может, потому-то мы и не ценим этого счетного прибора так высоко, как он заслуживает, смотрим на него как на какую-то наивную кустарную самодельщину в области счетных приборов.


Еще от автора Яков Исидорович Перельман
Быстрый счет. Тридцать простых приемов устного счета

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Занимательная физика. Книга 1

Книга написана известным популяризатором и педагогом и содержит парадоксы, головоломки, задачи, опыты, замысловатые вопросы и рассказы из области физики. Книга по характеру изложения и по объему знаний, предполагаемых у читателя, рассчитана на учащихся средней школы и на лиц, занимающихся самообразованием в таком же объеме.


Головоломки и развлечения

В книгу Якова Перельмана «Головоломки и развлечения» вошли занимательные задачи, опыты, рассказы и игры, помогающие проверить свои знания по математике и физике. Здесь встретятся задачи о часах, числовые головоломки, развлечения со спичками и магические квадраты, сумма чисел сторон которых удивляла астрологов и алхимиков древности и обладала, по их мнению, волшебными свойствами. Для среднего школьного возраста.


Занимательная астрономия

 Настоящая книга, написанная выдающимся популяризатором науки Я.И.Перельманом, знакомит читателя с отдельными вопросами астрономии, с ее замечательными научными достижениями, рассказывает в увлекательной форме о важнейших явлениях звездного неба. Автор показывает многие кажущиеся привычными и обыденными явления с совершенно новой и неожиданной стороны и раскрывает их действительный смысл.Задачи книги – развернуть перед читателем широкую картину мирового пространства и происходящих в нем удивительных явлений и возбудить интерес к одной из самых увлекательных наук – к науке о звездном небе.Для всех, кто интересуется астрономией, в том числе учителей, лекторов, руководителей кружков, любознательных школьников.


Головоломки. Задачи. Фокусы. Развлечения

«Головоломки. Задачи. Фокусы. Развлечения» — увлекательная книга, полная волшебства.Автор книги, известный популяризатор науки Яков Исидорович Перельман, поможет читателям разглядеть неожиданные стороны как будто знакомых предметов, откроет секрет феноменальной памяти, научит интересным фокусам, предложит много занимательных игр и развлечений.


Развлечения со спичками

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Рекомендуем почитать
Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.