Загадки и диковинки в мире чисел - [29]
Знаменитый английский натуралист А.Р. Уоллес придавал весьма серьезное значение развитию правильного представления о миллионе. Он предлагал [37] «в каждой большой школе отвести одну комнату или залу, на стенах которой можно было бы наглядно показать, что такое миллион. Для этой цели нужно иметь 100 больших квадратных листов бумаги, в 4У2 фута каждый, разграфленных квадратиками в четверть дюйма, оставив равное число белых промежутков между черными пятнами. Через каждые 10 пятен нужно оставлять двойной промежуток, чтобы отделить каждую сотню пятен (10 × 10). Таким образом на каждом листе будет по 10 тысяч черных пятен, хорошо различимых с середины комнаты, а все сто листов будут содержать миллион пятен. Такая зала была бы в высшей степени поучительна особенно в стране, где о миллионах говорят очень развязно и тратят их без смущения. Между тем никто не может оценить достижений современной науки, имеющей дело с невообразимо большими или невообразимо малыми величинами, если неспособен их представить наглядно и, суммируя в целое, вообразить себе, как велико число один миллион, когда современной астрономии и физике приходится иметь дело с сотнями, тысячами и даже миллионами таких миллионов [38] . Во всяком случае очень желательно, чтобы в каждом большом городе была устроена такая зала для наглядного показания на ее стенах величины одного миллиона. Это не помешало бы, если нужно, покрывать стены такой комнаты картами и другими висячими изображениями; их легко удалить, а изображение миллиона осталось бы постоянным наглядным уроком для всех посетителей».
Я предлагаю другой, более доступный для каждого способ развить в себе возможно отчетливое представление о величине миллиона. Для этого нужно только дать себе труд поупражняться в мысленном миллионном счете и суммировании размеров мелких, но хорошо знакомых нам единиц – шагов, минут, спичек, стаканов и т. п. Результаты получаются нередко неожиданные, поразительные.
Приведем несколько примеров.
Миллион секунд
Как вы думаете, сколько времени отняла бы у вас работа – пересчитать миллион каких-либо предметов, по одному каждую секунду? Оказывается, что, считая безостановочно по 10 часов в сутки, вы закончили бы подсчет в месяц времени. Приблизительно удостовериться в этом нетрудно даже устным вычислением: в часе 3600 секунд, в 10 часах – 36000; в трое суток вы, следовательно, пересчитаете всего около 100 тысяч предметов, а так как миллион в десять раз больше, то, чтобы досчитать до него, понадобится 30 дней [39] . Если бы вам платили за месяц службы всего один миллион рублей, выдавая ваше жалование единичными рублями, то все рабочее время уходило бы только на получение жалованья.
Отсюда следует, между прочим, что предложенная ранее работа – проставить в тетради миллион точек – потребовала бы много недель самого усердного и неустанного труда [40] . Да и тетрадь для этого понадобилась бы страниц в тысячу. Тем не менее такой труд был однажды выполнен. В одном распространенном английском журнале я видел недавно воспроизведение страницы из тетради, «единственное содержание которой составляет миллион аккуратно расставленных точек, по тысяче на странице». Все 500 листов этой заботливо переплетенной тетради были предварительно разграфлены карандашом и заполнены рукой одного беспримерно терпеливого школьного учителя чистописания в середине прошлого столетия. Работа, по словам дочери покойного «автора», доставившей эту тетрадь в редакцию, отняла у добровольного труженика длинный ряд лет.
В миллион раз толще волоса
Тонкость волоса вошла чуть ли не в поговорку. Все часто видят волос и хорошо знают, насколько он тонок. Толщина его не превосходит 0,1 миллиметра. Представьте себе, однако, что волос стал в миллион раз толще – какова тогда была бы его толщина. Был ли бы он толщиной в руку? Или в бревно? Или в большую бочку? Или, может быть, ширина его достигла бы ширины комнаты средних размеров?
Если вы никогда не задумывались над такой задачей, то можно почти поручиться, что, не проделав соответствующего вычисления, – выдадите грубо ошибочный ответ. Мало того: вы будете, пожалуй, даже оспаривать правильный ответ – настолько он покажется неправдоподобным. В самом деле: оказывается, что волос, увеличенный по толщине в миллион раз, имел бы сажен 50 в поперечнике! Это кажется невероятным, но дайте себе труд сделать подсчет, и вы убедитесь, что так и есть: 0,1 миллиметра × 1000000 = 0,1 метра × 1000 = 0,1 километра = 100 метров, или 50 сажен [41] .
Иметь правильное представление о миллионе – значит уметь оценивать длину миллиона знакомых промежутков, не ошибаясь в сотни и в тысячи раз. А ведь большинство людей на вопрос нашей задачи отвечают, что волос, при увеличении по толщине в миллион раз, был бы толщиною с бочку или бревно, т. е. называют величину именно в сто или тысячу раз меньшую.
Упражнения с миллионом
Проделаем еще ряд упражнений, чтобы освоиться надлежащим образом с величиною миллиона. Вы убедились уже, вероятно, на двух предыдущих примерах, насколько обычное наше представление о нем превратно и как полезно упражняться в миллионном счете, чтобы это превратное представление исправить.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Книга написана известным популяризатором и педагогом и содержит парадоксы, головоломки, задачи, опыты, замысловатые вопросы и рассказы из области физики. Книга по характеру изложения и по объему знаний, предполагаемых у читателя, рассчитана на учащихся средней школы и на лиц, занимающихся самообразованием в таком же объеме.
В книгу Якова Перельмана «Головоломки и развлечения» вошли занимательные задачи, опыты, рассказы и игры, помогающие проверить свои знания по математике и физике. Здесь встретятся задачи о часах, числовые головоломки, развлечения со спичками и магические квадраты, сумма чисел сторон которых удивляла астрологов и алхимиков древности и обладала, по их мнению, волшебными свойствами. Для среднего школьного возраста.
Настоящая книга, написанная выдающимся популяризатором науки Я.И.Перельманом, знакомит читателя с отдельными вопросами астрономии, с ее замечательными научными достижениями, рассказывает в увлекательной форме о важнейших явлениях звездного неба. Автор показывает многие кажущиеся привычными и обыденными явления с совершенно новой и неожиданной стороны и раскрывает их действительный смысл.Задачи книги – развернуть перед читателем широкую картину мирового пространства и происходящих в нем удивительных явлений и возбудить интерес к одной из самых увлекательных наук – к науке о звездном небе.Для всех, кто интересуется астрономией, в том числе учителей, лекторов, руководителей кружков, любознательных школьников.
«Головоломки. Задачи. Фокусы. Развлечения» — увлекательная книга, полная волшебства.Автор книги, известный популяризатор науки Яков Исидорович Перельман, поможет читателям разглядеть неожиданные стороны как будто знакомых предметов, откроет секрет феноменальной памяти, научит интересным фокусам, предложит много занимательных игр и развлечений.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.