Загадки и диковинки в мире чисел - [17]

Шрифт
Интервал

А именно: целое общество непосвященных в арифметические тайны гостей вы можете поразить следующим фокусом. Пусть кто-нибудь напишет на бумажке, секретно от вас, какое хочет трехзначное число и затем пусть припишет к нему еще раз то же самое число. Получится шестизначное число, состоящее из трех повторяющихся цифр. Предложите тому же товарищу или его соседу разделить – по-прежнему секретно от вас – это число на 7, причем вы заранее предсказываете, что остатка не получится. Результат деления передается соседу, который по вашему предложению делит его на 11; и хотя вы не знаете делимого, вы все же смело утверждаете, что и оно разделится без остатка. Полученный результат вы просите передать следующему соседу, которого просите разделить это число на 13 – деление снова выполняется без остатка, о чем вы заранее предупреждаете. Результат третьего деления вы, не глядя на полученное число, вручаете первому товарищу со словами:

– Вот число, которое вы задумали!

Этот красивый арифметический фокус, производящий на непосвященных впечатление волшебства, объясняется очень просто: вспомните, что приписать к трехзначному числу его само значит умножить его на 1001, т. е. на произведение 7 × 11 × 13. Шестизначное число, которое ваш товарищ получит после того, как припишет к задуманному числу его само, должно будет поэтому делиться без остатка и на 7, и на 11, и на 13, а после деления последовательно на эти три числа (т. е. на их произведение – 1001) должно снова дать первоначальное число.

Не вправе ли мы после сказанного приравнять число Шехеразады к тем чудесам волшебных арабских сказок, которым мы дивились в детстве? Разница лишь в том, что арифметическое чудо имеет естественное объяснение, а чудеса Востока непостижимы, – да еще и в том, что наше чудо действительно существует, а чудеса волшебных сказок вымышлены…

Число 10101

После сказанного о числе 1001

для вас уже не будет неожиданностью увидеть в витринах нашей галереи число 10101. Вы догадаетесь, какому именно свойству число это обязано такою честью. Оно, как и число 1001, дает удивительный результат при умножении, но не трехзначных, а двузначных чисел: каждое двузначное число, умноженное на 10101, дает в результате само себя, написанное трижды. Например: 73 × 10101 = 737373; 21 × 10101 = 212121. Причина уясняется из следующей строки:

Можно ли проделывать с помощью этого числа фокусы необычайного отгадывания, как с помощью числа 1001? Конечно, и здесь даже возможно обставить фокус эффектнее, разнообразнее, если иметь в виду, что 10101 есть произведение четырех простых чисел:

10101 = 3 × 7 × 13 × 37.

Предложив первому гостю задумать какое-нибудь двузначное число, вы предлагаете второму приписать к нему то же число, а третьего приписать то же число еще раз. Четвертого гостя вы просите разделить получившиеся шестизначное число, например, на 7; пятый гость должен разделить полученное частное на 3; шестой гость делит то, что получилось, на 37, и, наконец, седьмой делит этот результат на 13, – причем все 4 деления выполняются без остатка. Результат последнего деления вы просите передать первому гостю: это – задуманное им число.

При повторении фокуса вы можете внести в него некоторое разнообразие, обращаясь каждый раз к новым делителям. А именно, вместо множителей 3 × 7 × 13 × 37 можете взять следующие группы множителей: 21 × 13 × 37; 7 × 39 × 37; 3 × 91 × 37; 7 × 13 × 111.

Число это – 10101 – пожалуй, даже удивительнее волшебного числа Шехеразады, хотя и менее известно своими поразительными свойствами, нежели 1001. А между тем о нем писалось еще двести лет тому назад в «Арифметике» Магницкого, в той главе, где приводятся примеры умножения «с некоим удивлением». Тем с большим основанием должны мы включить его в наше собрание арифметических диковинок.

Шесть единиц

В соседней витрине мы видим другую диковинку арифметической консткамеры, число

 состоящее из шести единиц. Благодаря знакомству с волшебными свойствами числа 1001, мы сразу соображаем, что

111111 = 111 × 1001.

Но 111 = 3 × 37, а 1001 = 7 × 11 × 13. Отсюда следует, что наш новый числовой феномен, состоящий из одних лишь единиц, представляет собою произведение пяти простых множителей. Соединяя же эти 5 множителей в две группы на всевозможные лады, мы получаем 15 пар множителей, дающих в произведении одно и то же число 111111, а именно:

З × (7 × 11 × 13 × 37) = З × 37037 = 111111

7 × (3 × 11 × 13 × 37) = 7 × 15873 = 111111

11 × (3 X 7 X 13 × 37)= 11 X 10101=111111

13 × (3 × 7 × 11 × 37) = 13 × 8547 = 111111

37 × (3 × 7 × 11 × 13) = 37 × 3003 = 111111

(3 × 7) × (11 × 13 × 37) = 21 × 5291 = 111111

(3 × 11) × (7 × 13 × 37) = 33 × 3367 = 111111

и т. д.

Это значит, что вы можете засадить общество из 15 человек за работу умножения, и хотя каждый будет перемножать другую пару чисел, все получат один и тот же оригинальный результат: 111111. То же число, наконец, пригодно и для отгадывания задуманных чисел – наподобие того, как выполняется это с помощью чисел 1001 и 10101. В данном случае нужно предлагать задумывать число однозначное, т. е. цифру, и повторять 6 раз. Делителями здесь могут служить пять простых чисел: 3, 7, 11, 13, 37 и получающиеся из них составные: 21, 33, 39 и т. д. Это дает возможность до крайности разнообразить выполнение фокуса.


Еще от автора Яков Исидорович Перельман
Быстрый счет. Тридцать простых приемов устного счета

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Занимательная физика. Книга 1

Книга написана известным популяризатором и педагогом и содержит парадоксы, головоломки, задачи, опыты, замысловатые вопросы и рассказы из области физики. Книга по характеру изложения и по объему знаний, предполагаемых у читателя, рассчитана на учащихся средней школы и на лиц, занимающихся самообразованием в таком же объеме.


Головоломки и развлечения

В книгу Якова Перельмана «Головоломки и развлечения» вошли занимательные задачи, опыты, рассказы и игры, помогающие проверить свои знания по математике и физике. Здесь встретятся задачи о часах, числовые головоломки, развлечения со спичками и магические квадраты, сумма чисел сторон которых удивляла астрологов и алхимиков древности и обладала, по их мнению, волшебными свойствами. Для среднего школьного возраста.


Занимательная астрономия

 Настоящая книга, написанная выдающимся популяризатором науки Я.И.Перельманом, знакомит читателя с отдельными вопросами астрономии, с ее замечательными научными достижениями, рассказывает в увлекательной форме о важнейших явлениях звездного неба. Автор показывает многие кажущиеся привычными и обыденными явления с совершенно новой и неожиданной стороны и раскрывает их действительный смысл.Задачи книги – развернуть перед читателем широкую картину мирового пространства и происходящих в нем удивительных явлений и возбудить интерес к одной из самых увлекательных наук – к науке о звездном небе.Для всех, кто интересуется астрономией, в том числе учителей, лекторов, руководителей кружков, любознательных школьников.


Головоломки. Задачи. Фокусы. Развлечения

«Головоломки. Задачи. Фокусы. Развлечения» — увлекательная книга, полная волшебства.Автор книги, известный популяризатор науки Яков Исидорович Перельман, поможет читателям разглядеть неожиданные стороны как будто знакомых предметов, откроет секрет феноменальной памяти, научит интересным фокусам, предложит много занимательных игр и развлечений.


Развлечения со спичками

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Рекомендуем почитать
Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.