Загадка булатного узора - [54]
И тогда в Институте электросварки им. Е. О. Патона группой исследователей (Б. И. Медовар, Ю. В. Латаш, Б. Н. Максимович) под руководством академика Б. Е. Патона был разработан оригинальный способ получения высококачественной стали с помощью того же жидкого шлака. Новый процесс получил название электрошлакового переплава. В его основу был положен электрошлаковый процесс плавления расходуемых электродов в сочетании с принудительным формированием слитка в металлическом (медном) водоохлаждаемом кристаллизаторе (изложнице).
Созданная установка оказалась удивительно простой. По тонкой многометровой колонке движется держатель с расходуемым электродом, сделанным из выплавляемой марки стали. Электрод медленно опускается в медный кристаллизатор с расплавленным в нем синтетическим шлаком специально подобранного состава. В начале плавки после подачи электрического тока между кристаллизатором и электродом образуется дуга, горящая под слоем твердого сыпучего флюса. Флюс, расплавляясь, образует электропроводный жидкий шлак, который полностью шунтирует дугу. Начинается бездуговой процесс, получивший название электрошлакового. Выделяемое тепло медленно плавит стальной электрод, и капли жидкого металла, проходя через толщу шлака, попадают в кристаллизатор, где постепенно наращивается стальной слиток. Благодаря тому что каждая капля жидкого металла проходит через шлак, поверхность взаимодействия стали со шлаком огромная, и это обеспечивает достаточно полную очистку стали от ненужных компонентов.
Так вот, в Донецком политехническом институте использовали установку электрошлакового переплава для получения сплава железа с углеродом. Для этой цели стальной расходуемый электрод заменили графитовым, а в синтетический шлак порциями подавали металлизованные железные окатыши (комки руды, содержащие металлическое железо и его окислы). Окислы железа восстанавливались, железо плавилось, насыщалось углеродом, очищалось шлаком от вредных примесей и неметаллических включений и стекало в кристаллизатор. Так древний одностадийный способ получения незагрязненного вредными примесями высокоуглеродистого сплава был осуществлен на современной научно-технической основе.
Однородность или неоднородность?
Как мы уже выяснили, в начале XIX века существовали два совершенно противоположных подхода к природе стали, обеспечивающих ее высокое качество. Ле-Шателье и Карстен, известные западноевропейские металлурги, полагали, что хороший металл должен обладать однородной структурой: «Чем красивее структура, тем она хуже с точки зрения практики». П. П. Аносов считал, что чем неоднороднее металл, чем более подчеркивается неоднородность рисунком, тем выше свойства стали.
Современная наука подтвердила правомерность обоих этих взглядов. Каждый из способов был использован для получения высокопрочных материалов.
В последние годы с большим успехом развивается совершенно новое направление производства «однородных» сплавов — получение так называемых аморфных металлов. Жидкий сплав охлаждают с огромной скоростью, благодаря чему он переходит в твердое состояние, минуя кристаллическую фазу. Свойства таких «стеклообразных» металлов очень высокие. Так, например, прочность аморфного сплава железо — углерод — фосфор в 10 раз больше обычного (кристаллического). Кроме того, подобно железу, падавшему на Землю из космического пространства, аморфные сплавы обладают высокой стойкостью против атмосферной коррозии.
И все-таки слоистая структура булата и способы ее получения лежат в основе технологии производства материалов, также превосходящих по прочности обычные «однородные» стали. Для того чтобы понять природу упрочнения слоистых материалов, давайте мысленно проделаем такой эксперимент. Возьмем кусок картона я попробуем его разорвать. После этого наклеим на картон обычную бумагу и вновь испытаем его прочность на разрыв. Как, по-вашему, она увеличилась? Ответ настолько ясен, что вопрос, вероятно, вызовет улыбку читателя.
Между тем только в 30-е годы нашего столетия было обнаружено, что прочность двух сваренных между собой пластинок из твердой и мягкой стали значительно выше прочности каждой из них в отдельности. Такой эффект повышения прочности слоистого материала считался крупным научным открытием нашего времени!
Алексей Максимович Горький часто показывал своим гостям три небольших металлических бруска. Это первые самозатачивающиеся резцы, сделанные в 1926 году талантливым ученым и изобретателем А. М. Игнатьевым — большим другом писателя. Каждый резец состоит из нескольких металлических слоев разной твердости. Булатную структуру инструмента автор изобретения заимствовал у… бобров. Он заметил, что самозатачивающиеея зубы бобров и других грызунов состоят из твердых наружных слоев и мягких внутренних. Изобретение А. М. Игнатьева было в свое время запатентовано в США, Англии, Франции и многих других странах.
Сегодня слоистые материалы находят широкое применение в химической, электротехнической, машиностроительной, пищевой и других отраслях промышленности, а также в ювелирном деле и медицине. Представителями их являются биметаллические изделия, листы и ленты, изготовляемые металлургической промышленностью. Такие изделия привлекают не только прочностью, но и высокими физико-химическими свойствами материала в целом. Основой для большинства биметаллов является обычная низкоуглеродистая сталь, плакированная (покрытая) коррозионно-стойкими и кислотоупорными сплавами, никелем, кобальтом и титаном. Толщина покрытия обычно составляет 10–50 % от общей толщины. Эксплуатационные свойства таких биметаллов изменяются в широких пределах.