Есть также версия, что немцы использовали в основе своей разработки и идеи инженера Евгения Толкалинского, который в 1918 году эмигрировал из революционной России на Запад.
Так или иначе, согласно расчетам немецких инженеров, подземоход, или геоход, должен был перемещать команду из 5 человек и нести боезаряд в 300 кг, передвигаясь под землей со скоростью 7 км/ч. Предполагалось, что эти подземные лодки будут использованы для вторжения в Великобританию, проделав ходы под Ла-Маншем. Но операция «Морской лев» не состоялась, Британские острова атаковали с воздуха. В итоге разработка немецкой подземной лодки была заморожена.
Аналогичные работы велись и в советской России. В 30-е годы ХХ века изобретатель А. Требелев, конструкторы А. Баскин и А. Кириллов создали свой проект. Подземная лодка доходит до нефтяного пласта и «плывет» от одного «озера» к другому, таща за собой трубопровод, по которому затем на поверхность начнут качать «черное золото». Пригодился бы такой агрегат и при прокладке шахт и тоннелей.
Первые испытания лодки-крота были проведены на Урале, в рудниках под горой Благодать. Аппарат вгрызался внутрь горы, своими фрезами крошил крепчайшие породы. Но конструкция лодки оказалась все же недостаточно надежной, ее механизмы часто отказывали, и дальнейшие разработки в данном направлении были признаны несвоевременными. Тем более что приближалась Вторая мировая война.
Так выглядела одна из конструкций А. Требелева.
Несбывшаяся мечта
Во время войны подземную лодку не удалось использовать ни немецким, ни советским конструкторам. Но это вовсе не значит, что идея ее создания канула в Лету.
Говорят, в 1945 году, после разгрома фашистской Германии, в руки советских специалистов попали чертежи и остатки странного механизма. Эксперты пришли к выводу, что перед ними аппарат, предназначенный для проделывания ходов под землей.
Проект отправили на доработку. В 50-е годы ленинградский профессор Г. Бабат предлагал использовать для снабжения энергией подземохода сверхвысокочастотное излучение. А московский профессор Г. Покровский примерно в те же годы произвел расчеты, показывающие принципиальную возможность использования процессов кавитации не только в жидкой, но и в твердой среде. Пузырьки газа или пара, по его мнению, способны весьма эффективно разрушать горные породы.
Говорил о возможности создания «подземных торпед» и академик А. Д. Сахаров. По его мнению, можно создать условия, при которых подземный снаряд будет двигаться не в толще пород, а в облаке распыленных частиц, что обеспечит сказочную скорость продвижения — десятки, а то и сотни километров в час!
Схема «подземного крейсера», описанная в одном из научно-популярных журналов. Цифрами обозначены:
>1 — «лапы» для перемещения субтеррины, 2 — отсек управления и навигации, 3 — гусеницы подземохода, 4 — силовой отсек, 5 — энергетический отсек с одним или двумя ядерными реакторами, 6 — шнек для ввинчивания в породу, 7 — двигательный отсек (внутри), 8 — фрезеры для разрыхления горных пород.
Вспомнили и о разработке А. Требелева. Проектом заинтересовался лично Н. С. Хрущев. Для серийного производства подземных лодок срочно стали возводить огромный завод. Было создано несколько вариантов подземохода, которые отправили для испытаний опять-таки на Урал. Первый цикл испытаний прошел удачно — подземная лодка со скоростью пешехода уверенно проделала ход с одного склона горы на другой, но во время второй серии испытаний произошел загадочный взрыв, и подземная лодка погибла со всем своим экипажем.
Испытания подземной лодки так и не были доведены до конца. Но это не значит, что к идее геохода не вернутся уже в наши дни. Проект создания геохода в Кузбассе лишь одна из таких попыток…
Целлюлоза — это материал, из которого состоят клеточные стенки в растениях. Именно она обычно обеспечивает прочность и эластичность растительных тканей.
В наши дни целлюлоза из древесины обычно идет на производство бумаги. А вот биотехнологи Пермского государственного национального исследовательского университета (ПГНИУ) разработали новый способ получения наноцеллюлозы, которая по своей прочности… превосходит сталь.
В наши дни в промышленных целях используют два источника целлюлозы — древесину и хлопок. После химической обработки на ее основе изготавливают целлофан, пластические материалы, вискозные волокна для производства тканей. При изготовлении бумаги тоже применяют целлюлозу. А хлопок вообще состоит из нее на 99,8 %. Обработанный смесью серной и азотной кислот, он становится взрывчатым веществом пироксилином.
Наноцеллюлоза — набор волокон целлюлозы с шириной волокна от 5 до 20 нм и длиной от 10 нм до нескольких микрон — имеет сходство с обычной целлюлозой, но превосходит ее по многим качествам. Свойства псевдопластичности позволяют материалу вести себя как жидкость при тряске и взбалтывании, а в обычных условиях он становится вязким. Эти свойства позволяют использовать ее для создания сверхлегких и сверхпрочных материалов.
В Лаборатории клеточных и микробных биотехнологий ПГНИУ в сотрудничестве с Институтом экологии и генетики микроорганизмов Уральского отделения РАН впервые получили наноцеллюлозу биотехнологическим путем. Ученые нашли штамм плесневых грибов Aspergillus niger, которые эффективно разрушают лигнин — органическое вещество в стенках растительных клеток. Этот своеобразный клей и выедают грибки, что позволяет получать наноцеллюлозу в 3,5 раза легче и дешевле.