Юный техник, 2014 № 12 - [6]
Взглянув на эту конструкцию, вы, скорее всего, разочаруетесь, поскольку и на робот, и на живое дерево она похожа мало. Но все же отдельные черты прототипа здесь отыскать можно. Основу робота PLANTOID составляет пластиковый корпус-«ствол», изготовленный по последней технологической моде — на трехмерном принтере. Внутри этого корпуса располагается микропроцессорная система и иная электроника, источники питания и исполнительные механизмы. Из «ствола» выходят четыре ответвления с «листиками»-фотоэлементами и иными датчиками различных типов. Эти сенсоры способны обнаруживать наличие в воздухе углекислого и иных газов, производить измерения различных параметров, таких как температура, влажность, сила притяжения.
Как и реальное дерево, PLANTOID имеет «корни». Один из них представляет собой гибкое подвижное щупальце, на конце которого находятся чувствительные элементы еще нескольких датчиков. Это щупальце может проходить сквозь слой грунта, изменяя направление при встрече с непреодолимыми препятствиями. При помощи датчиков щупальце может определить состав почвы и наличие в ней различных химических веществ, в том числе и токсичных. Второй «корень» представляет собой своего рода буровую установку, при помощи которой робот имеет возможность углубиться в почву и закрепиться в ней. У этого «корня» есть вращающаяся буровая головка, которая углубляется в грунт, увлекая за собой гофрированную полимерную трубку. По ней собранный грунт может закачиваться на анализ. Заодно вся система выступает и в роли импровизированного якоря, удерживающего всю конструкцию на месте даже при сильном ветре.
Проект PLANTOID возглавляется исследователями из итальянского Технологического института (Istituto Italia di Tecnologia), а еще в нем задействованы исследователи и инженеры из каталонского Института биоинженерии (Institute for Bioengineering of Catalonia), Испания, и Швейцарского федерального политехнического университета Лозанны (Swiss Ecole Polytechnique Federale de Lausanne, EPFL). Реализация проекта начата в 2012 году, а завершиться он должен в апреле 2015 года. К тому моменту ученые надеются решить некоторые задачи, связанные с получением роботом энергии из окружающей среды и с добавлением дополнительных функций корням и ветвям робота-дерева.
И это не единственная кибермодель дерева. Так, недавно компания Nissan показала станцию бесконтактной подзарядки Solar Tree — «солнечное дерево». Такая установка идеально подходит для питания роботов, которые при исчерпании заряда могут самостоятельно подъехать и «постоять под деревом», получая от него электроэнергию.
Высота «дерева» 12 м, а диаметр панелей с фотоэлементами — около трех. Так что одновременно на подзарядку могут подкатить сразу три робота. Преимущество такого подхода также в том, что панели могут следить за солнцем и поворачиваться к нему в течение дня, достигая максимального КПД 30 % и выдавая 20 кВт электроэнергии.
Главная часть дерева-робота.
Лабораторная установка PLANTOID.
Станции Solar Tree могут устанавливаться в городских кварталах и использоваться для подзарядки электромобилей. К тому же установки обеспечивают приятную тень и прохладу в жаркое время года. А за городом могут быть устроены целые плантации таких «деревьев». По словам инженеров Nissan, такой «лес» способен обеспечить электричеством городской район или поселок на 7 000 домов.
Еще один робот, называемый Breeze, внешне выглядит как настоящий японский мини-клен. Но на самом деле это робот-сторож, который способен, благодаря чувствительным сенсорам, ощущать передвижения неподалеку от себя и поднимать тревогу, если в доме в отсутствие хозяев появился кто-то чужой.
Возвращаясь же к роботу PLANTOID, можем добавить, что его нынешняя форма является всего лишь демонстрацией идеи создания будущих роботов-деревьев. Реальные воплощения идеи и технологий такого робота могут использоваться для проведения постоянного мониторинга состояния грунта, выявления загрязнений окружающей среды на нашей Земле.
Наконец, по мысли создателей PLANTOID, набор «саженцев» таких роботов-деревьев, загруженный в отсек автоматического космического аппарата, может быть «рассажен» по поверхности другой планеты и образовать там исследовательскую сеть, собирающую разнообразные научные данные. То-то инопланетяне удивятся, обнаружив у себя по соседству таких «поселенцев»!
С. НИКОЛАЕВ
ПРЕМИИ
Как мы находим куда нам идти?
Издавна чукчи, эскимосы, представители других северных народностей, а также опытные путешественники и охотники могли ориентироваться на местности, используя некое «чувство пространства». Такой «мозговой навигатор» на самом деле присутствует у многих живых существ — перелетных птиц, животных и людей, подтвердили американо-британский ученый Джон О’Киф (John O’Keefe) и супруги Мэй-Бритт и Эдвард Мозер (May-Britt and Edward Moser) из Норвегии, удостоенные за это Нобелевской премии по физиологии и медицине.
Если быть точным, то нынешние лауреаты удостоены Нобелевской премии «за открытие клеток, которые составляют систему позиционирования мозга». Их исследования позволили ответить на вопросы, «каким образом мы знаем, в какой точке пространства находимся, как находим путь из одного места в другое и как эта информация запоминается, воспроизводится в зависимости от месторасположения», отмечается в пресс-релизе Нобелевского комитета.
Рассмотрены основные металлические материалы, которые применяются в ювелирной технике, их структура и свойства. Подробно изложены литейные свойства сплавов и приведены особенности плавки драгоценных металлов и сплавов. Описаны драгоценные, полудрагоценные и поделочные камни, используемые в ювелирном деле. Приведены примеры уникальных ювелирных изделий, изготовленных мастерами XVI—XVII веков и изделия современных российских мастеров.Книга будет полезна преподавателям, бакалаврам, магистрам и аспирантам, а так же учащимся колледжей и читателям, которые желают выбрать материал для изготовления ювелирных изделий в небольших частных мастерских.Рекомендовано Министерством образования и науки Российской Федерации в качестве учебника для бакалавров, магистров по специальности 26140002 «Технология художественной обработки материалов» и аспирантов специальности 170006 «Техническая эстетика и дизайн».
Автомобиль – это источник повышенной опасности, поэтому управлять им могут только люди, прошедшие специальное обучение, имеющие медицинскую справку, стажировку.Книга посвящена вопросу охраны труда. В ней подробно изложены общие положения, которыми должны руководствоваться наниматели, внеплановые и текущие инструктажи для водителей, а также другие немаловажные моменты, обеспечивающие безопасность водителя.Отдельно рассмотрены дорожно-транспортные происшествия и их причины, исходные данные для проведения автотранспортной экспертизы, модели поведения в случаях попадания в ДТП, приближения к месту аварии, а также общий порядок оказания помощи и порядок оформления несчастных случаев.Кроме того, в книге можно найти информацию по правилам перевозки негабаритных и опасных грузов, а также системе информации об опасности (СИО).
Умение работать с благородным материалом – деревом – всегда высоко ценилось в России. Но приобретение умений и навыков мастера плотничных и столярных работ невозможно без правильного подхода к выбору материалов, инструментов, организации рабочего места, изучения технологических тонкостей, составляющих процесс обработки древесины. Эта книга покажет возможности использования этих навыков как в процессе строительства деревянного дома, так и при изготовлении мебели своими руками, поможет достичь определенных высот в этом увлекательном и полезном процессе.
Настоящий Федеральный закон принимается в целях защиты жизни, здоровья, имущества граждан и юридических лиц, государственного и муниципального имущества от пожаров, определяет основные положения технического регулирования в области пожарной безопасности и устанавливает общие требования пожарной безопасности к объектам защиты (продукции), в том числе к зданиям, сооружениям и строениям, промышленным объектам, пожарно-технической продукции и продукции общего назначения. Федеральные законы о технических регламентах, содержащие требования пожарной безопасности к конкретной продукции, не действуют в части, устанавливающей более низкие, чем установленные настоящим Федеральным законом, требования пожарной безопасности.Положения настоящего Федерального закона об обеспечении пожарной безопасности объектов защиты обязательны для исполнения: при проектировании, строительстве, капитальном ремонте, реконструкции, техническом перевооружении, изменении функционального назначения, техническом обслуживании, эксплуатации и утилизации объектов защиты; разработке, принятии, применении и исполнении федеральных законов о технических регламентах, содержащих требования пожарной безопасности, а также нормативных документов по пожарной безопасности; разработке технической документации на объекты защиты.Со дня вступления в силу настоящего Федерального закона до дня вступления в силу соответствующих технических регламентов требования к объектам защиты (продукции), процессам производства, эксплуатации, хранения, транспортирования, реализации и утилизации (вывода из эксплуатации), установленные нормативными правовыми актами Российской Федерации и нормативными документами федеральных органов исполнительной власти, подлежат обязательному исполнению в части, не противоречащей требованиям настоящего Федерального закона.