Когда заполнится и верхняя полость, приклейте вторую мембрану и окончательно загерметизируйте корпус, для чего вставьте во впускное отверстие заранее приготовленную пробку и тщательно залейте ее клеем.
Хемотронный датчик будет работать от батарейки напряжением 4,5 В. Верхний и нижний электроды, находящиеся в полости, соедините с положительным полюсом батарейки, средний — с отрицательным. В цепь желательно включить реостат, а также вольтметр и микроамперметр, который, впрочем, можно заменить тестером.
С помощью реостата (или сопротивлений) установите напряжение примерно 0,8–0,9 В. Микроамперметр, включенный в цепь центрального электрода, покажет ток 200–300 мкА. Оставьте цепь замкнутой часов на 10–15. Ток постепенно понизится до 10–20 мкА, что и требуется. Датчик готов к работе.
Проверить, как он действует, проще всего так: подуйте на одну из мембран или слегка прикоснитесь к ней, например, иголкой. Стрелка микроамперметра должна тут же отклониться вправо. Для глаза движение мембраны незаметно, но датчик на него сразу отреагировал.
Происходит это вот почему. Сила тока зависит от того, сколько йода находится возле отрицательного электрода — катода. Под действием постоянного тока йод на катоде восстанавливается, принимая электроны, а на аноде он вновь образуется из ионов. Поэтому йод как бы постепенно перекачивается от катода к аноду.
После зарядки датчика ток понемногу падает, потому что у отрицательного электрода остается все меньше йода. Но как только вы чуть-чуть, даже слабым прикосновением, воздействовали на мембрану, к катоду поступает дополнительная, пусть и очень небольшая, порция молекул йода; датчик мгновенно на это реагирует — ток возрастает.
Хемотронные приборы на редкость чувствительны; тщательно изготовленные, они могут иногда отреагировать буквально на считаные молекулы. В свое время их использовали в медицинских исследованиях.
А нельзя ли как-нибудь использовать такой датчик дома или в школе? Можно. Достаточно поставить датчик в дверях квартиры, и он откликнется, как только гость дотронется до двери.
Но, понятно, такой датчик сам по себе для этой цели не слишком удобен: надо все время смотреть на микроамперметр и ждать, пока отклонится его стрелка. Однако к датчику можно приспособить систему сигнализации — звонок или электрическую лампочку. Как это сделать — придумайте сами или посоветуйтесь с учителем физики.
Публикацию подготовил К. КОРЕНЕВ
Кстати…
ЕЩЕ ДВА УСТРОЙСТВА
На принципах хемотроники в свое время разработали еще переменное сопротивление и ячейку памяти.
Принцип работы электрохимического управляемого сопротивления — мимистора — основан на изменении сопротивления проводника в результате катодного осаждения на него металла или анодного растворения.
Мимистор (см. рис.) состоит из стеклянного корпуса 4, заполненного электролитом 1 (обычно CuSo>4 + H>2SO>4 + этанол). На одной из стенок герметично закрытой ячейки нанесена электропроводящая подложка 6, имеющая выводы 7 и 5. Электролит омывает электрод 2 с выводом 3. Входные сигналы подаются на электропроводящую подложку 6 и электрод 2. В зависимости от полярности входных сигналов, на подложке 6 медь будет осаждаться или растворяться. Тем самым будет изменяться электрическое сопротивление медной пленки, находящейся на подложке 6.
Приборы подобного типа имеют диапазон изменения сопротивления от 0 до 1000 Ом, диапазон токов управления 0,05 — 1 мА, потребляемую мощность управления 10>-3 — 10>-6 Вт, объем 0,2 0,4 см>3 массу — несколько граммов. Они могут работать при температурах от минус 15 до плюс 100 °C, устойчивы к ударным нагрузкам и вибрации.
Схема электрохимического управляемого сопротивления.
Хемотронная ячейка памяти устроена так.
В герметичном пластмассовом корпусе расположены два пластинчатых электрода 1 из золота или платины. Электроды с внутренней стороны изолированы эпоксидным покрытием 2, за исключением узкого зазора 3, ширина которого не должна превышать 0,1 мм. На противоположной стенке ячейки напротив зазора расположен медный электрод 4. Расстояние между этим электродом и пластинчатыми электродами 1 составляет примерно 0,5 мм. Сопротивление между электродами 1 зависит от наличия раствора электролита в зазоре 3. Если зазор заполнен раствором, то это сопротивление велико. При подаче на электроды 1 напряжения, отрицательного относительно электрода 4, последний начинает растворяться, и в зазоре 3 происходит отложение меди.
Через некоторое время (время записи) зазор между электродами 1 будет замкнут осажденной медью, и сопротивление между ними резко снизится из-за высокой проводимости меди. Если же на электроды 1 подать напряжение, положительное относительно электрода 4, то осажденная в зазоре медь растворяется и ячейка возвращается в прежнее состояние. Таким образом, ячейка имеет два устойчивых состояния, позволяющих записывать информацию в двоичном коде.
Схема хемотронной ячейки памяти.