Юный техник, 2012 № 11 - [5]
Для чего пригодятся «кривые» лазерные лучи? Одно из возможных применений — усовершенствование оптического пинцета, способного без механического соприкосновения передвигать объекты по сложным траекториям.
Другое возможное применение — выжигать лазером изогнутые отверстия. Более того, лучи Эйри могут проникать даже сквозь непрозрачные препятствия, если его шлейф проходит в стороне.
Кстати, о непрозрачных препятствиях. Группа ученых из Массачусетского технологического института сконструировала видеокамеру, которая способна дать изображения объектов, скрытые от прямого обзора. При этом новая камера делает это не с помощью технологий рентгеновского видения, а благодаря своей способности заглянуть за угол.
При этом в работе новой камеры не используется ни квантовая физика, ни черная магия. Андрее Вельтен, руководитель данного проекта, рассказывает: «Нам удалось только правильно совместить известные технологии видеотехники, лазеров и компьютерной обработки…»
Видеокамера снабжена лазерными источниками света, которые освещают всю сцену импульсами, длительностью по 50 фемтосекунд. Эти импульсы отражаются от объектов во всех направлениях. Отраженный лазерный свет падает на скрытый объект и отражается от него, проецируя образ на предметах в окружающем пространстве. Эти слабые отраженные образы скрытого объекта фиксирует высокоскоростная камера и передает на обработку в компьютер, который собирает их вместе и строит почти точную трехмерную копию скрытого объекта. Благодаря высокой производительности центрального процессора компьютера все это занимает весьма мало времени — на обработку одного кадра уходит всего 15 миллионных долей секунды. При этом, правда, погрешность построения трехмерной модели составляет около 2–3 мм, поэтому на синтезированном изображении отсутствуют мелкие детали. Но в любом случае, общая форма скрытого объекта передается довольно точно.
Установка, позволяющая «заглянуть за угол»
«Да будет свет!» — говорим мы, щелкая электрическим выключателем. Но можно ли обойтись без источника света? Команде шведских ученых из Технологического университета Чалмерса удалось решить эту задачку, создав некоторое количество фотонов света из ничего, из абсолютной пустоты.
С физической точки зрения создание фотонов является достаточно легким делом, но всегда присутствует нечто, атом, элементарная частица, которые испускают эти фотоны света. Получение фотонов, которые одновременно обладают свойствами частиц и электромагнитных волн, из абсолютной пустоты попахивало бы черной магией, если бы в природе не существовало довольно странных принципов квантовой механики.
Квантовая теория говорит, что абсолютная пустота не является таковой на самом деле. Независимо от того, насколько пустым кажется область пространства стороннему наблюдателю, пустота, или вакуум, представляет собой кипящую «пену» из «виртуальных» частиц, которые постоянно появляются и исчезают. Время существования этих частиц в обычном пространстве-времени настолько мало, что их не удается зарегистрировать никакими научными приборами и измерительными методами.
Лазерные лучи можно будет использовать для манипуляции с клетками непосредственно в тканях или других сложных средах.
Шведским ученым удалось реализовать методику, с помощью которой были захвачены «виртуальные» частицы, и затем преобразовать их в крошечные частицы света — фотоны. Таким образом, им удалось получить что-то вроде бы из ничего.
Технология этого научного «фокуса» такова. Ученые заставили невероятно быстро двигаться миниатюрное «зеркало»; скорость его перемещения составляла одну четверть от скорости света. Причем это было не реальное, материальное, зеркало. Его роль выполняло электромагнитное поле, генерируемое сверхпроводящей обмоткой высокочастотного электромагнита и колеблющееся с частотой миллиарды циклов в секунду.
Когда «виртуальные» фотоны сталкивались с поверхностью двигающегося «зеркала», у них не оставалось времени для того, чтобы исчезнуть. Энергия этих фотонов поглощалась «зеркалом», которое излучало избыток энергии в виде обычных реальных фотонов.
В принципе можно использовать такую технологию для извлечения из ничего и других частиц, включая электроны и протоны. Но такие эксперименты потребуют неоправданно большого количества энергии, по крайней мере, в настоящее время. Так что пока получение из ничего фотонов света просто является яркой демонстрацией возможностей причудливой и таинственной квантовой механики.
Иное дело, разработка исследователей из университета Северной Каролины, США. Они создали технологию, позволяющую превратить двухмерные заготовки в трехмерные объекты заранее заданной формы с помощью инфракрасного излучения.
На заготовку из специального пластика, в структуре которого во время производства искусственно создано внутреннее напряжение, струйным принтером наносятся черные полосы в местах предполагаемого сгиба. Полученная модель после этого освещается инфракрасным светом. И в результате большего прогрева зачерненных зон заготовка превращается в трехмерный объект, форма которого задана заранее.
Вниманию читателей предлагается книга, посвященная созданию первого поколения отечественных обитаемых подводных аппаратов, предназначенных для работы на глубинах более 1000 м История подводного флота, несмотря на вал публикации последнего времени, остается мало известной не только широкой общественности, но и людям, всю жизнь проработавшим в отрасли Между тем. сложность задач, стоящих перед участниками работ по «глубоководной тематике» – так это называлось в Министерстве судостроительной промышленности – можно сравнить только с теми, что пришлось решать создателям космических кораблей Но если фамилии Королева и Гагарина известны всему миру, го о главном конструкторе глубоководной техники Юрии Константиновиче Сапожкове или первом капитане-глубоководнике Михаиле Николаевиче Диомидове читатель впервые узнает из этой книги.
Рассмотрены основные металлические материалы, которые применяются в ювелирной технике, их структура и свойства. Подробно изложены литейные свойства сплавов и приведены особенности плавки драгоценных металлов и сплавов. Описаны драгоценные, полудрагоценные и поделочные камни, используемые в ювелирном деле. Приведены примеры уникальных ювелирных изделий, изготовленных мастерами XVI—XVII веков и изделия современных российских мастеров.Книга будет полезна преподавателям, бакалаврам, магистрам и аспирантам, а так же учащимся колледжей и читателям, которые желают выбрать материал для изготовления ювелирных изделий в небольших частных мастерских.Рекомендовано Министерством образования и науки Российской Федерации в качестве учебника для бакалавров, магистров по специальности 26140002 «Технология художественной обработки материалов» и аспирантов специальности 170006 «Техническая эстетика и дизайн».
Автомобиль – это источник повышенной опасности, поэтому управлять им могут только люди, прошедшие специальное обучение, имеющие медицинскую справку, стажировку.Книга посвящена вопросу охраны труда. В ней подробно изложены общие положения, которыми должны руководствоваться наниматели, внеплановые и текущие инструктажи для водителей, а также другие немаловажные моменты, обеспечивающие безопасность водителя.Отдельно рассмотрены дорожно-транспортные происшествия и их причины, исходные данные для проведения автотранспортной экспертизы, модели поведения в случаях попадания в ДТП, приближения к месту аварии, а также общий порядок оказания помощи и порядок оформления несчастных случаев.Кроме того, в книге можно найти информацию по правилам перевозки негабаритных и опасных грузов, а также системе информации об опасности (СИО).
Умение работать с благородным материалом – деревом – всегда высоко ценилось в России. Но приобретение умений и навыков мастера плотничных и столярных работ невозможно без правильного подхода к выбору материалов, инструментов, организации рабочего места, изучения технологических тонкостей, составляющих процесс обработки древесины. Эта книга покажет возможности использования этих навыков как в процессе строительства деревянного дома, так и при изготовлении мебели своими руками, поможет достичь определенных высот в этом увлекательном и полезном процессе.
Настоящий Федеральный закон принимается в целях защиты жизни, здоровья, имущества граждан и юридических лиц, государственного и муниципального имущества от пожаров, определяет основные положения технического регулирования в области пожарной безопасности и устанавливает общие требования пожарной безопасности к объектам защиты (продукции), в том числе к зданиям, сооружениям и строениям, промышленным объектам, пожарно-технической продукции и продукции общего назначения. Федеральные законы о технических регламентах, содержащие требования пожарной безопасности к конкретной продукции, не действуют в части, устанавливающей более низкие, чем установленные настоящим Федеральным законом, требования пожарной безопасности.Положения настоящего Федерального закона об обеспечении пожарной безопасности объектов защиты обязательны для исполнения: при проектировании, строительстве, капитальном ремонте, реконструкции, техническом перевооружении, изменении функционального назначения, техническом обслуживании, эксплуатации и утилизации объектов защиты; разработке, принятии, применении и исполнении федеральных законов о технических регламентах, содержащих требования пожарной безопасности, а также нормативных документов по пожарной безопасности; разработке технической документации на объекты защиты.Со дня вступления в силу настоящего Федерального закона до дня вступления в силу соответствующих технических регламентов требования к объектам защиты (продукции), процессам производства, эксплуатации, хранения, транспортирования, реализации и утилизации (вывода из эксплуатации), установленные нормативными правовыми актами Российской Федерации и нормативными документами федеральных органов исполнительной власти, подлежат обязательному исполнению в части, не противоречащей требованиям настоящего Федерального закона.