Юный техник, 2012 № 07 - [7]

Шрифт
Интервал

Для этого разные группы ученых используют разные способы и оборудование. Так, команда Калифорнийского университета в Беркли, возглавляемая Хиротаки Сато, применяет 8-канальную радиосистему под управлением микроконтроллера. Применение керамических антенн позволило добиться малого размера и веса конструкции.

Команда, возглавляемая Алпером Боцкуртом из университета Северной Каролины, применяет двухканальную систему, включающую АМ-приемник собственной конструкции и микроконтроллер PIC. Однако это оборудование пока настолько громоздко и тяжело, что его поднимает в воздух не само насекомое, а особый воздушный шарик, наполненный гелием.

Исследователи Массачусетского технологического института использовали чип-приемник, который работал по беспроводному протоколу 802.15.4а, потребляя при этом рекордно малое количество энергии — 2.5 милливатта (1,4 наноджоуля на один бит информации) при скорости передачи данных в 16 Мб/с. Приемник был связан с микроконтроллером, а электроды вживлялись насекомому еще на стадии куколки, и взрослая особь уже содержала в себе надежно интегрированную систему контроля.

Основная идея всех трех разработок состоит в том, чтобы использовать не только крылья и мышцы насекомого, управляя напрямую их движением, но и научиться отдавать приказы нервной системе, которая сама уже позаботится об их исполнении. Сигналы, посылаемые в мозг таким образом, контролируют полет насекомого.

Если в помещении, где летает жук Mecynorhina ugandensis из подсемейства бронзовых, выключить свет, то он тут же садится. Подобное поведение жука подсказало ученым из группы Хиротаки Сато идею управлять полетом при помощи сигналов, посылаемых в зрительную часть мозга насекомого. Разность потенциалов, подаваемая при помощи электродов к левой и правой зрительным областям жука, заставляет насекомое лететь туда, где, как ему кажется, светлее. Причем нервная система, получив сигнал к действию, дальше сама посылает команды мышцам, чтобы поддерживать полет.

Основная сложность, с которой столкнулись ученые, — индивидуальность реакции насекомого на управляющий импульс. Один жук в ответ на стимуляцию летает несколько секунд, другой — две минуты. Стандартизация позволит не только делать более надежных насекомых-киборгов, но и повлечет за собой лучшее понимание принципов работы нервной системы в целом.

Группой ученых-нейробиологов из Германии был создан симулятор полета для обычных мух. Используя это устройство, ученые из Института нейробиологии Макса Планка надеются улучшить обработку динамических изображений для дальнейшего применения этой технологии в робототехнике.

Симулятор представляет собой специальный дисплей с циклически изменяющимся изображением. Насекомое удерживается перед дисплеем на месте с помощью тончайших проводов, которые одновременно являются электродами, позволяющими регистрировать реакции мозговых и нервных клеток на раздражители.



Изображение в симуляторе для мух.


И это не единственный способ управления. Перед тем как поменять направление полета, многие насекомые, обладающие подвижной шеей, как правило, разворачивают голову в нужном направлении. Это позволяет осуществить весьма элегантный способ «руления», который напоминает управление лошадью: при помощи повода и уздечки всадник немного разворачивает голову животного, и оно следует в ту же сторону. Так, используя схожий принцип, группе А. Боцкурта удалось управлять направлением движения бабочки Manduca sexta, подавая электрический потенциал к мышцам ее шеи.

Наконец, мухи-дрозофилы из Йельского университета взлетают, подчиняясь нажатию кнопки. Этому простому действию предшествовала сложная процедура.

Для начала мух изменяют на генетическом уровне. Им встраивают специальный ген, информация с которого считывается при синтезе белка, воздействующего на участок нервного узла в теле насекомого, который отвечает за паническую реакцию. Под действием страха муха взлетает. Но как заставить ген вырабатывать белок в нужный момент? Для этого насекомому вводят молекулы АТФ (аденозинтрифосфорной кислоты) в специальной оболочке, которая разрушается под воздействием ультрафиолетового излучения. Нажимая на кнопку, ученые включали излучение. Молекулы АТФ освобождались от оболочки, воздействовали на модифицированные гены в клетках нервного узла, те вырабатывали белок, который раздражал центр паники. После этого до 80 % мух тут же взмывали в воздух.



Схема установки для контролируемого полета насекомого. Для того чтобы вес электронных компонентов не мешал полету, они прикреплены к наполненному гелием шарику.

>Цифрами обозначено: 1 — баллон с гелием, 2 — пластиковая трубка, 3 — магнит.


Руководитель проекта Геро Мизенбек надеется, что таким образом можно будет управлять не только мухами и тараканами, но даже млекопитающими, например, мышами. Причем им даже не придется делать инъекции АТФ — достаточно будет дать это вещество в виде таблеток или капель.

Удобно то, что облучать ультрафиолетом можно любую часть подопытного животного или насекомого: нейроны есть везде, а не только в головном мозге. Хотя ученые утверждают, что цель их эксперимента не дистанционное управление мухами, а изучение деятельности нейронов, верится им с трудом. Ведь перспективы у подобных экспериментов весьма заманчивые — от превращения насекомых, способных проникнуть в самые укромные уголки, в шпионов, пожарных и т. д. до дистанционного управления людьми, превращенными в зомби (см. «Подробности для любознательных»).


Еще от автора Журнал «Юный техник»
Юный техник, 2000 № 09

Популярный детский и юношеский журнал.


Юный техник, 2003 № 07

Популярный детский и юношеский журнал.


Юный техник, 2010 № 08

Популярный детский и юношеский журнал.


Юный техник, 2003 № 02

Популярный детский и юношеский журнал.


Юный техник, 2005 № 04

Популярный детский и юношеский журнал.


Юный техник, 2004 № 04

Популярный детский и юношеский журнал.


Рекомендуем почитать
Юный техник, 2015 № 04

Популярный детский и юношеский журнал.


Юный техник, 2014 № 02

Популярный детский и юношеский журнал.


Грузовые автомобили. Охрана труда

Автомобиль – это источник повышенной опасности, поэтому управлять им могут только люди, прошедшие специальное обучение, имеющие медицинскую справку, стажировку.Книга посвящена вопросу охраны труда. В ней подробно изложены общие положения, которыми должны руководствоваться наниматели, внеплановые и текущие инструктажи для водителей, а также другие немаловажные моменты, обеспечивающие безопасность водителя.Отдельно рассмотрены дорожно-транспортные происшествия и их причины, исходные данные для проведения автотранспортной экспертизы, модели поведения в случаях попадания в ДТП, приближения к месту аварии, а также общий порядок оказания помощи и порядок оформления несчастных случаев.Кроме того, в книге можно найти информацию по правилам перевозки негабаритных и опасных грузов, а также системе информации об опасности (СИО).



Столярные и плотничные работы

Умение работать с благородным материалом – деревом – всегда высоко ценилось в России. Но приобретение умений и навыков мастера плотничных и столярных работ невозможно без правильного подхода к выбору материалов, инструментов, организации рабочего места, изучения технологических тонкостей, составляющих процесс обработки древесины. Эта книга покажет возможности использования этих навыков как в процессе строительства деревянного дома, так и при изготовлении мебели своими руками, поможет достичь определенных высот в этом увлекательном и полезном процессе.


Технический регламент о требованиях пожарной безопасности. Федеральный закон № 123-ФЗ от 22 июля 2008 г.

Настоящий Федеральный закон принимается в целях защиты жизни, здоровья, имущества граждан и юридических лиц, государственного и муниципального имущества от пожаров, определяет основные положения технического регулирования в области пожарной безопасности и устанавливает общие требования пожарной безопасности к объектам защиты (продукции), в том числе к зданиям, сооружениям и строениям, промышленным объектам, пожарно-технической продукции и продукции общего назначения. Федеральные законы о технических регламентах, содержащие требования пожарной безопасности к конкретной продукции, не действуют в части, устанавливающей более низкие, чем установленные настоящим Федеральным законом, требования пожарной безопасности.Положения настоящего Федерального закона об обеспечении пожарной безопасности объектов защиты обязательны для исполнения: при проектировании, строительстве, капитальном ремонте, реконструкции, техническом перевооружении, изменении функционального назначения, техническом обслуживании, эксплуатации и утилизации объектов защиты; разработке, принятии, применении и исполнении федеральных законов о технических регламентах, содержащих требования пожарной безопасности, а также нормативных документов по пожарной безопасности; разработке технической документации на объекты защиты.Со дня вступления в силу настоящего Федерального закона до дня вступления в силу соответствующих технических регламентов требования к объектам защиты (продукции), процессам производства, эксплуатации, хранения, транспортирования, реализации и утилизации (вывода из эксплуатации), установленные нормативными правовыми актами Российской Федерации и нормативными документами федеральных органов исполнительной власти, подлежат обязательному исполнению в части, не противоречащей требованиям настоящего Федерального закона.