Юный техник, 2011 № 12 - [7]

Шрифт
Интервал

В общем, как сказал Абдул эль-Галбзуриа, профессор Центра медицины университета Лейдена, «с научной точки зрения, гораздо интереснее и важнее выяснить, как клетки кожи уживаются с паутиной, чтобы мы могли научиться пересаживать эту кожу жертвам ожогов или использовать те же нити в хирургии для наложения швов, чем мудрить с бронежилетами». Да и сама Джалила Эссаиди созналась, что главная цель их работы — привлечь внимание публики к возможностям современной биотехнологии.

ПРЕМИИ

Почти кристаллы

Лауреатом Нобелевской премии по химии за 2011 год стал ученый из Израиля Даниель Шехтман за работу, которую в 1982 году сделал практически в одиночку.


Путь профессора в науку был вполне традиционен. Дан Шехтман родился в 1941 году в г. Тель-Авиве. В 1972 году окончил Израильский технологический институт в Хайфе. С тех пор он работает в том же институте исследователем. Кроме того, Д. Шехтман — профессор израильского технологического института Технион в Хайфе, а также сотрудник департамента энергетики США и профессор в Университете штата Айова.

Свою награду он получил «за открытие квазикристаллов». Так сказано в пресс-релизе Нобелевского комитета. Однако обосновавшие свое решение члены этого комитета сочли необходимым пояснить, что профессор из Хайфы открыл нечто, что «потрясает основы представления о том, как устроено твердое тело».

И вот здесь, наверное, необходимы пояснения. А дело было так. В начале 1982 года Шехтман был отправлен на научную стажировку в США, в Национальное бюро стандартов. Здесь он и проводил эксперименты по изучению кристаллической решетки сплава алюминия и марганца с помощью электронного микроскопа.

Всем, наверное, известно, что любой объект в нашем мире, даже мы с вами, состоит из молекул и атомов. В твердых телах атомы расположены в строгом порядке, определяемом так называемой кристаллической решеткой. Увидеть эту решетку невооруженным глазом нельзя — уж слишком невелики атомы и расстояния между ними. И микроскоп, даже электронный, помогает слабо. А потому судят о строении решетки еще и по данным рентгено-структурного анализа.

Каждый, кто хоть однажды видел медицинские рентгеновские снимки, согласится, что понять по ним, какой орган где расположен и какой здоров, а какой болен, не каждому по силам. Анализом рентгенограмм занимаются в медицине особые специалисты.



Вид структуры кристалла под электронным микроскопом.



Микроструктура квазикристалла сплава серебра и алюминия.



Нобелевский лауреат Даниэль Шехтман.


Таким специалистом, только в области структуры сплавов, и стал Шехтман. Во время своих опытов он пропускал через образцы пучки электронов. Некоторые из электронов при этом сталкивались с атомами, изменяли траекторию своего полета (то есть, говоря иначе, осуществлялась дифракция пучка электронов), и на дисплее возникало некое изображение структуры сплава.

Исследователь заметил, что изучаемая им структура хорошо упорядочена, но в то же время и необычна.

Шехтман увидел окружности, образованные 10 яркими точками. Из теории ему было известно, что кристаллическая решетка обычно дает 2, 3, 4 или даже 6 точек, но никак уж не 10. Он повторил эксперимент и получил ту же картину. Д. Шехтман сделал запись о странном явлении в своем рабочем дневнике и тем самым точно датировал открытие — 8 апреля 1982 года. Продолжая эксперименты, Д. Шехтман вскоре получил дифракционный рисунок из 5-точечных окружностей, что тоже было против кристаллографических закономерностей.

Не поделиться своими результатами с американскими коллегами Дан Шехтман не мог. Но ему… просто не поверили. А когда исследователь написал статью о своей работе и отправил ее в редакцию научного журнала, рукопись была отвергнута примерно с той же формулировкой.

Д. Шехтман вернулся в Израиль и разослал копии рукописи своим коллегам в разных странах с просьбой проверить его эксперименты. И два года спустя двое других исследователей — Джон Кан и Жерве Гратиа — получили такую же картину. Статью Д. Шехтмана и его коллег принял к публикации журнал Physical Review Letters.

Так мир узнал о существовании квазикристаллов.

Такое название они получили потому, что их кристаллическая решетка обладает осями симметрии разных порядков: это ранее противоречило представлениям кристаллографов. В настоящее время обнаружено около сотни разновидностей квазикристаллов, имеющих точечную симметрию икосаэдра, а также десяти-, восьми- и двенадцатиугольника (см. рис.).



В настоящее время известно много видов квазикристаллов, имеющих точечную симметрию икосаэдра, а также десяти-, восьми- и двенадцатиугольника.


Со временем выяснилось, что с квазикристаллами физики сталкивались задолго до их официального открытия. «В частности, такие структуры были выявлены при изучении в 40-е годы XX века дифракции Дебая — Шерера на зернах интерметаллидов в алюминиевых сплавах, — сказано в научном отчете. — Однако в то время икосаэдрические квазикристаллы были ошибочно идентифицированы как кубические кристаллы с большой постоянной кристаллической решетки». То есть, говоря попросту, квазикристаллы были восприняты не как новый класс веществ, а как некие искажения в старых структурах.


Еще от автора Журнал «Юный техник»
Юный техник, 2010 № 08

Популярный детский и юношеский журнал.


Юный техник, 2000 № 09

Популярный детский и юношеский журнал.


Юный техник, 2003 № 07

Популярный детский и юношеский журнал.


Юный техник, 2003 № 02

Популярный детский и юношеский журнал.


Юный техник, 2005 № 04

Популярный детский и юношеский журнал.


Юный техник, 2010 № 01

Популярный детский и юношеский журнал.


Рекомендуем почитать
Юный техник, 2014 № 04

Популярный детский и юношеский журнал.


Юный техник, 2014 № 03

Популярный детский и юношеский журнал.


Юный техник, 2014 № 02

Популярный детский и юношеский журнал.


Юный техник, 2013 № 11

Популярный детский и юношеский журнал.


Поистине светлая идея. Эдисон. Электрическое освещение

Томас Альва Эдисон — один из тех людей, кто внес наибольший вклад в тот облик мира, каким мы видим его сегодня. Этот американский изобретатель, самый плодовитый в XX веке, запатентовал более тысячи изобретений, которые еще при жизни сделали его легендарным. Он участвовал в создании фонографа, телеграфа, телефона и первых аппаратов, запечатлевающих движение, — предшественников кинематографа. Однако нет никаких сомнений в том, что его главное достижение — это электрическое освещение, пришедшее во все уголки планеты с созданием лампы накаливания, а также разработка первой электростанции.


Юный техник, 2001 № 08

Популярный детский и юношеский журнал.