Юный техник, 2011 № 04 - [19]
Положите несколько камешков на дно банки. Насыпьте в банку сахар так, чтобы он полностью скрыл камешки. Медленно потрясите банку. Причем обратите особое внимание: банку необходимо трясти, перемещая вверх-вниз, а не из стороны в сторону.
При этом получится вот что. Камешки гораздо тяжелее крупинок сахара. А при движении тяжелым предметам требуется гораздо больше времени для остановки, чем легким. То есть камешки продолжат по инерции свое движение вверх, когда банка начнет опускаться вниз. Это приведет к тому, что под камешками образуется пустое пространство, которое тут же заполняют сахарные крупинки. Когда банка пойдет вверх, камешки продолжат путь вниз, однако там уже все будет занято сахаром. Таким способом камешки как бы всплывут в сахарном песке, сами пробьют себе дорогу на свободу и окажутся сверху сахарного песка.
ФИЗИЧЕСКИЙ ЭКСПЕРИМЕНТ
Чудеса в капле
Чудеса можно найти даже в капле воды. Вот куда-то уверенно плывет инфузория-туфелька. Тело ее неподвижно, словно льдинка. Но за секунду туфелька проплывает расстояние, многократно превышающее ее собственную длину. Трудно поверить, что к нему может быть как-то причастно движение микроскопических ворсинок, покрывающих ее тело.
Подобные загадки встречаются не только в микромире. Вот молодая щука неподвижно зависла в зарослях водорослей. Вдруг появилось нечто съедобное — и хищница, не совершив ни единого движения ни хвостом, ни плавниками, бросается на нее. Не менее удивительна и форель, неподвижно стоящая в воде быстрого горного ручья, не шевеля плавниками. В чем же секрет?
Микроорганизм со всех сторон окружен молекулами воды. Их давление по всем направлениям одинаково, и микроорганизм неподвижен.
Микроорганизм с одной стороны своего тела начал выделять вещества, уменьшающие силу поверхностного натяжения. Равновесие молекулярных сил нарушено, и он пришел в движение.
Конкретного объяснения всех этих чудес наука пока не дала. Но нам ничто не мешает построить свои догадки. Если вырезать из картона лодочку с щелью посередине, вложить в эту щель кусочек камфары и опустить лодочку на воду, то она бойко двинется вперед. Объясняется это тем, что камфара, растворяясь, повышает поверхностное натяжение воды позади лодочки, и оно толкает ее вперед.
Твердая камфара бывает в аптеках не часто, поэтому можно поставить другой опыт. Наломайте 5–6 мелких кусочков пенопласта и уложите их на воде по кругу. Если в воду в центре круга окунуть кусочек мыла, то кусочки разбегутся. Чтобы собрать их, достаточно коснуться воды кусочком сахара.
В этих опытах, возможно, таится механизм движения инфузории, щучки и неподвижности форели в потоке. Движители обычного типа — плавники или пароходные винты, — отбрасывая воду, действуют на реактивном принципе. Когда же в нашем опыте кусочки пенопласта реагируют на сахар и мыло, то ими движет изменение силы поверхностного натяжения воды.
Поверхность воды можно сравнить с тончайшей резиновой пленкой. Под действием сахара ее натяжение возрастает, и кусочки пенопласта сближаются. Мыло же, наоборот, снижает поверхностное натяжение воды, и более сильное натяжение круга кусочки пенопласта растаскивает.
И инфузории, и крохотная щучка теоретически могут двигаться за счет изменения сил поверхностного натяжения воды. Для этого они должны уметь выделять вещества, управляющие этим напряжением.
Рассмотрим это на примере инфузории, имеющей форму шарика (есть и такие). В чистой воде на поверхности ее тела имеется примерно такая же равномерно натянутая пленка молекул воды. Все действующие в ней силы уравновешены, и инфузория неподвижна. Но вот она с одной стороны выпустила вещество, снижающее поверхностное натяжение. Равновесие тотчас нарушится, на противоположной стороне более упругая пленка начнет сжиматься, и инфузория придет в движение.
Если инфузория умудрится на одном из полушарий своего тела снизить силу поверхностного натяжения воды в три раза, то, как показывают расчеты, она сможет развить скорость 16 м/с. При такой скорости возможного запаса вещества ей хватит лишь на доли миллиметра пути, но при скорости в десятые доли миллиметра в секунду ей хватит ресурсов, чтобы бесконечно долго плавать по своему океану — капле воды.
На том же принципе могла бы двигаться и щучка. Если она может повысить силу поверхностного натяжения воды в 2 раза, то при длине тела в 10 см, те же 10 см она преодолеет всего за 0,03 секунды. От такого броска не ускользнет ни одна добыча!
Однако с увеличением размеров тела сопротивление возрастает быстрее, чем возникающее на его поверхности давление. Для существ большого размера и тем более подводных лодок такой способ передвижения, к сожалению, не пригоден.
А. ИЛЬИН
Рисунки автора
ЗАОЧНАЯ ШКОЛА РАДИОЭЛЕКТРОНИКИ
Солнечная энергетика — своими руками
Поток солнечной энергии в средних широтах не так уж и мал — до 600 Вт на квадратный метр. Поэтому в местах, где много солнечных дней, всерьез думают о ее промышленном использовании. В Калифорнии, например, в пустынной местности, непригодной для сельского хозяйства, построен целый завод по производству электроэнергии, где люди кажутся букашками рядом с панелями солнечных батарей.
Вниманию читателей предлагается книга, посвященная созданию первого поколения отечественных обитаемых подводных аппаратов, предназначенных для работы на глубинах более 1000 м История подводного флота, несмотря на вал публикации последнего времени, остается мало известной не только широкой общественности, но и людям, всю жизнь проработавшим в отрасли Между тем. сложность задач, стоящих перед участниками работ по «глубоководной тематике» – так это называлось в Министерстве судостроительной промышленности – можно сравнить только с теми, что пришлось решать создателям космических кораблей Но если фамилии Королева и Гагарина известны всему миру, го о главном конструкторе глубоководной техники Юрии Константиновиче Сапожкове или первом капитане-глубоководнике Михаиле Николаевиче Диомидове читатель впервые узнает из этой книги.
Рассмотрены основные металлические материалы, которые применяются в ювелирной технике, их структура и свойства. Подробно изложены литейные свойства сплавов и приведены особенности плавки драгоценных металлов и сплавов. Описаны драгоценные, полудрагоценные и поделочные камни, используемые в ювелирном деле. Приведены примеры уникальных ювелирных изделий, изготовленных мастерами XVI—XVII веков и изделия современных российских мастеров.Книга будет полезна преподавателям, бакалаврам, магистрам и аспирантам, а так же учащимся колледжей и читателям, которые желают выбрать материал для изготовления ювелирных изделий в небольших частных мастерских.Рекомендовано Министерством образования и науки Российской Федерации в качестве учебника для бакалавров, магистров по специальности 26140002 «Технология художественной обработки материалов» и аспирантов специальности 170006 «Техническая эстетика и дизайн».
Автомобиль – это источник повышенной опасности, поэтому управлять им могут только люди, прошедшие специальное обучение, имеющие медицинскую справку, стажировку.Книга посвящена вопросу охраны труда. В ней подробно изложены общие положения, которыми должны руководствоваться наниматели, внеплановые и текущие инструктажи для водителей, а также другие немаловажные моменты, обеспечивающие безопасность водителя.Отдельно рассмотрены дорожно-транспортные происшествия и их причины, исходные данные для проведения автотранспортной экспертизы, модели поведения в случаях попадания в ДТП, приближения к месту аварии, а также общий порядок оказания помощи и порядок оформления несчастных случаев.Кроме того, в книге можно найти информацию по правилам перевозки негабаритных и опасных грузов, а также системе информации об опасности (СИО).
Умение работать с благородным материалом – деревом – всегда высоко ценилось в России. Но приобретение умений и навыков мастера плотничных и столярных работ невозможно без правильного подхода к выбору материалов, инструментов, организации рабочего места, изучения технологических тонкостей, составляющих процесс обработки древесины. Эта книга покажет возможности использования этих навыков как в процессе строительства деревянного дома, так и при изготовлении мебели своими руками, поможет достичь определенных высот в этом увлекательном и полезном процессе.
Настоящий Федеральный закон принимается в целях защиты жизни, здоровья, имущества граждан и юридических лиц, государственного и муниципального имущества от пожаров, определяет основные положения технического регулирования в области пожарной безопасности и устанавливает общие требования пожарной безопасности к объектам защиты (продукции), в том числе к зданиям, сооружениям и строениям, промышленным объектам, пожарно-технической продукции и продукции общего назначения. Федеральные законы о технических регламентах, содержащие требования пожарной безопасности к конкретной продукции, не действуют в части, устанавливающей более низкие, чем установленные настоящим Федеральным законом, требования пожарной безопасности.Положения настоящего Федерального закона об обеспечении пожарной безопасности объектов защиты обязательны для исполнения: при проектировании, строительстве, капитальном ремонте, реконструкции, техническом перевооружении, изменении функционального назначения, техническом обслуживании, эксплуатации и утилизации объектов защиты; разработке, принятии, применении и исполнении федеральных законов о технических регламентах, содержащих требования пожарной безопасности, а также нормативных документов по пожарной безопасности; разработке технической документации на объекты защиты.Со дня вступления в силу настоящего Федерального закона до дня вступления в силу соответствующих технических регламентов требования к объектам защиты (продукции), процессам производства, эксплуатации, хранения, транспортирования, реализации и утилизации (вывода из эксплуатации), установленные нормативными правовыми актами Российской Федерации и нормативными документами федеральных органов исполнительной власти, подлежат обязательному исполнению в части, не противоречащей требованиям настоящего Федерального закона.