Юный техник, 2009 № 09 - [4]

Шрифт
Интервал

И тогда Гершкович пошел на хитрость. Он предложил изолировать от атмосферы только ту часть свариваемого изделия, где сварка ведется как раз в данный момент. А для этого прикрыть данный фрагмент своеобразным «плазменным флюсом». При обычной сварке, как известно, именно флюс, плавясь, прикрывает непроницаемой для воздуха коркой место сварки. А тут роль флюса выполняет плазма, которую получают в плазмогенераторе — устройстве около 1 м в высоту и порядка 30 см в диаметре. Внутри его газ нагревается до температуры 6500 °C, и получается плазма, которая сразу же попадает в ловушку электромагнитного поля и обволакивает место сварки. При этом частицы плазмы, как и любого газа, оказывают давление, которое не дает воздуху прорваться к месту сварки, и обеспечивают надлежащее качество сварного шва.

Но можно ли использовать плазменный «щит» против ударов ракет и снарядов? По идее, не так сложно представить себе некий генератор плазмы, который будет формировать сильную струю, которая заставит взрываться и плавиться летящие ракеты и снаряды еще на подлете к цели.

Но для работы такого генератора опять-таки понадобится немалое количество энергии. Кроме того, плазменное поле как разновидность электромагнитного более действенно против тел, имеющих электрический заряд. Такой заряд довольно просто навести в металле.

Но что будет, если кому-то в голову придет идея вспомнить старое?.. Некогда стреляли каменными ядрами, а в XXI веке можно стрелять, например, снарядами с керамическими наконечниками…

Придется, видимо, подумать о многослойной защите. Возможно, каждый слой сам по себе не будет достаточно прочным, чтобы остановить пушечное ядро, но вместе они сделают это достаточно эффективно.


Невидимая броня в несколько слоев

Попробуем же представить себе структуру такого силового поля. Первый, внешний, слой, к примеру, может представлять собой нечто вроде плазменного щита, где плазма разогрета до температуры, достаточной для испарения металлов. Затем следует второй слой, представляющий собой решетку из высокоэнергетических лазерных лучей. Она будет испарять те объекты (скажем, керамические стержни), которые прорвались через первую линию обороны.

Далее — третий рубеж защиты, представляющий собой пространственную решетку из «углеродных нанотрубок». Такие трубки во много раз прочнее стали.

Пока самая длинная из полученных в мире углеродных нанотрубок имеет длину всего около 15 мм, но, вероятно, в будущем технологи смогут создавать углеродные нанотрубки произвольной длины и плести из них сети чрезвычайной прочности. Эти сети будут вылавливать те объекты, которые смогут проникнуть через два предыдущих рубежа защиты.

Экран из нанотрубок будет невидим, так как каждая отдельная нанонить по толщине сравнима с атомом. А значит, ей будет свойственен один недостаток — она не сможет задерживать лазерное излучение. Поэтому, чтобы остановить лазерный луч, наш многослойной щит должен будет обладать еще и сильно выраженным свойством фотохроматичности, или переменной прозрачности.

В наши дни материалы с такими характеристиками используются при изготовлении солнечных очков. Переменная прозрачность материала достигается за счет использования молекул, которые могут существовать, по крайней мере, в двух состояниях. При одном состоянии молекул такой материал прозрачен. Но под воздействием УФ-излучения молекулы мгновенно переходят в другое состояние, и материал теряет прозрачность. Примерно на том же принципе действуют и очки, предохраняющие глаза военных пилотов и солдат пехоты от слепящего лазерного излучения. Так что со временем, вероятно, можно будет создавать и целые экраны из фотохромного стекла, способные противостоять самому сильному лазерному излучению.

Но есть ведь еще микроволновое, рентгеновское и терагерцовое излучения, над защитой от которых еще придется подумать. Так что в силовом щите неизбежно появление все новых и новых слоев. Таким образом, извечное противоборство «меча и щита» будет продолжено, только на новом физическом уровне.

Публикацию подготовил С. НИКОЛАЕВ

СОЗДАНО В РОССИИ

Всем лазерам лазер

Новый инструмент науки удостоился особого упоминания в обзорном докладе президента РАН Юрия Осипова на майском общем собрании Академии наук России. «Учеными Института химии высокочистых веществ и Центра волоконной оптики впервые в мире получена технология получения кварцевых световодов, легированных висмутом, созданы лазеры, излучающие в диапазоне 1300–1500 нанометров», — сказал академик Юрий Осипов.

Почему эти лазеры специально выделены среди множества других квантовых генераторов? Об этом мы попросили рассказать одного из разработчиков, директора Центра волоконной оптики, академика Евгения Дианова.



Сегодня через океанские линии связи с континента на континент передаются со скоростью 1 терабит в секунду телепрограммы, телеграммы и телефонные переговоры, информация Интернета… Казалось бы, огромная пропускная способность волоконных кабелей на многие годы обеспечит нам беспрепятственную передачу всевозможных сведений. Однако на самом деле глобальный поток информации удваивается каждый год. Так что вскоре ныне существующие каналы связи перестанут справляться. Что делать?


Еще от автора Журнал «Юный техник»
Юный техник, 2013 № 02

Популярный детский и юношеский журнал.


Юный техник, 2012 № 07

Популярный детский и юношеский журнал.


Юный техник, 2000 № 09

Популярный детский и юношеский журнал.


Юный техник, 2003 № 02

Популярный детский и юношеский журнал.


Юный техник, 2004 № 04

Популярный детский и юношеский журнал.


Юный техник, 2003 № 07

Популярный детский и юношеский журнал.


Рекомендуем почитать
100 великих чудес инженерной мысли

За два последних столетия научно-технический прогресс совершил ошеломляющий рывок. На что ранее человечество затрачивало века, теперь уходят десятилетия или всего лишь годы. При таких темпах развития науки и техники сегодня удивить мир чем-то особенным очень трудно. Но в прежние времена появление нового творения инженерной мысли зачастую означало преодоление очередного рубежа, решение той или иной крайне актуальной задачи. Человечество «брало очередную высоту», и эта «высота» служила отправной точкой для новых свершений.


CCTV. Библия видеонаблюдения. Цифровые и сетевые технологии

Это 2-е издание популярной за рубежом и в России книги Владо Дамьяновски — всемирно известного эксперта в области видеонаблюдения и охранного телевидения, в которой обобщено около десяти лет теоретических исследований и более двадцати лет практического опыта. Книга ориентирована на довольно широкую читательскую аудиторию — менеджеров по системам безопасности, инсталляторов и интеграторов оборудования, консультантов, разработчиков и конечных пользователей. Кроме того, книга будет по достоинству оценена теми, кто собирается заняться системами видеонаблюдения и охранным телевидением.


Юный техник, 2005 № 02

Популярный детский и юношеский журнал.


Юный техник, 2007 № 01

Популярный детский и юношеский журнал.


Юный техник, 2009 № 12

Популярный детский и юношеский журнал.


Мечты в Сантьяго

Когда тридцать лет назад вооруженные силы Пиночета свергли чилийское правительство, они обнаружили коммуникационную систему революционеров - "социалистический интернет", опутавший всю страну. Его создатель? Эксцентричный ученый из Суррея. Энди Беккет -- о забытой истории Стаффорда Бира.