Юный техник, 2009 № 08 - [6]
И вот ныне сторонники панспермии — теории распространения во Вселенной жизни посредством космических «агентов» — получили существенное подтверждение своей правоты. Пока ведь никому не удалось убедительно показать на практике, что в природных земных условиях неорганическое соединение может превратиться в органическое. А вот органику в космосе уже обнаружили. Находят споры микробов или органические соединения и внутри упавших на Землю метеоритов.
Причем космические «пассажиры», как полагают, путешествуют внутри комет и астероидов даже от галактики к галактике. «Небесные странники» не только выполняют транспортную функцию, но также защищают своих «пассажиров» от агрессивных внешних воздействий, например, жесткого космического излучения.
В 1969 году ученые получили убедительные доказательства правомерности этой теории. Анализ изотопного состава углерода в органических соединениях, найденных на метеорите Мурчисон, показал, что эти вещества образовались за пределами нашей планеты.
Метеорит принес на Землю урацил и ксантин. Если бы астероид упал не в XX веке, а на несколько миллиардов лет раньше, то история жизни на Земле могла бы начаться с этого момента. Урацил и ксантин являются веществами-предшественниками, из которых образуются молекулы ДНК и РНК. А в этих молекулах, как известно, записана генетическая информация обо всех организмах, населяющих нашу планету.
Этилформиат и n-пропилцианид пополнили список потенциальных «прародителей жизни». Правда, они не являются предшественниками нуклеиновых кислот или белков, но их обнаружение доказывает, что космос может служить источником сложных органических веществ. И даже если ни одно из них никогда не попадало на Землю, это знание само по себе очень важно для понимания законов развития Вселенной.
Простые соединения излучают на одной характерной частоте. Чем больше различных атомов входит в состав вещества, тем больше линий появляется в спектре его излучения. При этом «разглядеть» каждую отдельную линию становится все сложнее. В случае богатых химическими соединениями источников, каким является Sgr В2, астрономам еще необходимо вычленить линии, соответствующие тем или иным индивидуальным веществам, из общего спектра звездного излучения. Этилформиату и n-пропилцианиду соответствуют 36 спектральных линий, а всего телескоп выявил в Большой колыбели молекул 3700 линий.
Астрономам также удалось обнаружить в космосе и более сложные молекулы. В 2004 году исследователи из Университета Толедо в Огайо, изучавшие туманность Красный Прямоугольник, нашли в ней молекулы антрацена и пирена. Эти соединения представляют собой циклические углеводороды и содержат 24 и 26 атомов соответственно.
Но каким образом во Вселенной образуются органические молекулы? Расстояния между небесными телами огромны, и в первом приближении космос представляет собой пустое пространство. Лишь в отдельных его участках наблюдается некоторое увеличение плотности материи. Например, в газопылевых облаках, из которых рождаются звезды. Молекулы газа в таких «населенных пунктах» расположены достаточно близко для того, чтобы сталкиваться друг с другом. Кроме того, молекулы могут оседать на частицах пыли и реагировать в «спокойной обстановке».
Компьютерное изображение этилформиата (вверху) и n-пропилцианида (внизу).
Впервые мысль о возможности образования органических соединений при столкновении космических частиц, двигающихся с очень высокими скоростями, была высказана несколько лет назад российскими учеными, работавшими под руководством Георгия Манагадзе из Института космических исследований РАН.
Прежде всего, таким путем в космическом пространстве образуются простейшие молекулы, например, метанол или формальдегид. Для синтеза сложных веществ необходим более изощренный технологический процесс.
Компьютерные модели показывают, что небольшие молекулы выступают в качестве строительных блоков для создания более крупных соединений. По мнению ученых, этилформиат и n-пропилцианид образовались именно таким путем.
Итак, получается, что в космическом пространстве вполне могут образоваться пахучие вещества. Но вот «унюхать» непосредственно этот запах ни человек, ни иное земное существо в безвоздушном пространстве не смогут. Да и распробовать Вселенную на вкус тоже никому не удастся.
СУМАСШЕДШИЕ МЫСЛИ
Вселенная из одного электрона?
Помните: чтобы быть верной, идея должна быть совсем уж сумасшедшей? Видимо, этой мыслью и руководствовался известный американский теоретик Ричард Фейнман, разрабатывая вот какую теорию…
В начале XX века английский теоретик Джеймс Максвелл составил систему уравнений, позволившую описать поведение электромагнитного излучения. При этом неожиданно выяснилась одна деталь. Решение максвелловых уравнений для света дает не один, а два ответа. Один из них описывает «запаздывающую» волну, которая представляет собой обычное движение света из одной точки в другую. А вот второй — некую «опережающую» волну, которая, по идее, физически представляет собой луч света, уходящий назад во времени.
В течение сотни лет «опережающее» решение попросту отбрасывалось как не имеющее практической ценности, в то время как «нормальное» решение достаточно точно предсказывало поведение радиоволн всех диапазонов. А вот физикам-теоретикам опережающая волна все эти годы не дает спокойно спать. Уравнения Максвелла — один из столпов современной науки, поэтому к любому их решению следует отнестись очень серьезно, рассуждали ученые.
Издание предназначено для специалистов – занимающихся подготовкой и размещением заказов на проведение капитального и текущего ремонтов зданий и сооружений для государственных и муниципальных нужд. В издании рассматриваются вопросы обследования зданий, подготовки дефектных ведомостей, составления технического задания, подготовке и проверке (экспертизе) проектно – сметной документации.Особое внимание уделено основным аспектам составления проекта государственного (муниципального) контракта на выполнение работ по капитальному и текущему ремонту зданий и сооружений, в том числе порядку составления форм КС-2, КС-3 при бюджетном финансировании ремонтных работ.
В книге рассмотрены последние достижения физики и их применения в ряде отраслей современного производства, приборостроения, в электронике, связи, транспорте и медицине. Изложены физические основы мембранной технологии, перспективы использования солитонов и другие вопросы. Книга предназначена для дополнительного чтения по физике в средних специальных учебных заведениях. Может быть полезна учителям физики и учащимся школ и профтехучилищ.
Очерк преподавателя Военно-морской академии Алексея Травиничева, в котором сравнивается "Наутилус" Жюля Верна с реальными подводными судами начала ХХ века. Помимо оценки эффективности действия подводных лодок в реальных боевых ситуациях и тактико-технических характеристик новейших субмарин, оценивается их возможное применение для научно-исследовательской работы в океане…
Рассмотрены основные металлические материалы, которые применяются в ювелирной технике, их структура и свойства. Подробно изложены литейные свойства сплавов и приведены особенности плавки драгоценных металлов и сплавов. Описаны драгоценные, полудрагоценные и поделочные камни, используемые в ювелирном деле. Приведены примеры уникальных ювелирных изделий, изготовленных мастерами XVI—XVII веков и изделия современных российских мастеров.Книга будет полезна преподавателям, бакалаврам, магистрам и аспирантам, а так же учащимся колледжей и читателям, которые желают выбрать материал для изготовления ювелирных изделий в небольших частных мастерских.Рекомендовано Министерством образования и науки Российской Федерации в качестве учебника для бакалавров, магистров по специальности 26140002 «Технология художественной обработки материалов» и аспирантов специальности 170006 «Техническая эстетика и дизайн».
Умение работать с благородным материалом – деревом – всегда высоко ценилось в России. Но приобретение умений и навыков мастера плотничных и столярных работ невозможно без правильного подхода к выбору материалов, инструментов, организации рабочего места, изучения технологических тонкостей, составляющих процесс обработки древесины. Эта книга покажет возможности использования этих навыков как в процессе строительства деревянного дома, так и при изготовлении мебели своими руками, поможет достичь определенных высот в этом увлекательном и полезном процессе.
Настоящий Федеральный закон принимается в целях защиты жизни, здоровья, имущества граждан и юридических лиц, государственного и муниципального имущества от пожаров, определяет основные положения технического регулирования в области пожарной безопасности и устанавливает общие требования пожарной безопасности к объектам защиты (продукции), в том числе к зданиям, сооружениям и строениям, промышленным объектам, пожарно-технической продукции и продукции общего назначения. Федеральные законы о технических регламентах, содержащие требования пожарной безопасности к конкретной продукции, не действуют в части, устанавливающей более низкие, чем установленные настоящим Федеральным законом, требования пожарной безопасности.Положения настоящего Федерального закона об обеспечении пожарной безопасности объектов защиты обязательны для исполнения: при проектировании, строительстве, капитальном ремонте, реконструкции, техническом перевооружении, изменении функционального назначения, техническом обслуживании, эксплуатации и утилизации объектов защиты; разработке, принятии, применении и исполнении федеральных законов о технических регламентах, содержащих требования пожарной безопасности, а также нормативных документов по пожарной безопасности; разработке технической документации на объекты защиты.Со дня вступления в силу настоящего Федерального закона до дня вступления в силу соответствующих технических регламентов требования к объектам защиты (продукции), процессам производства, эксплуатации, хранения, транспортирования, реализации и утилизации (вывода из эксплуатации), установленные нормативными правовыми актами Российской Федерации и нормативными документами федеральных органов исполнительной власти, подлежат обязательному исполнению в части, не противоречащей требованиям настоящего Федерального закона.