Юный техник, 2009 № 05 - [4]

Шрифт
Интервал

?


С началом XXI века в науке сложилось новое направление, которое называется физика экстремальных световых нолей. Речь идет об импульсах света, длительностью в десятки фемтосекунд (10>-15 с) и мощностью в десятки петаватт (10>15 Вт). Более того, лазерное излучение, как известно, может фокусироваться в очень маленькое пятно с интенсивностью 10>22 Вт на кв. см. А длительность импульсов ныне можно сократить до 100 аттосекунд (10>-18 с). С такими величинами и имеет дело физика экстремальных световых полей.

Чтобы было понятнее, что они собой представляют, вот вам такое наглядное сравнение. Десять фемтосекунд — длительность импульса в лаборатории — во столько же раз короче минуты, во сколько сама минута короче времени существования всей Вселенной. Если же говорить о мощностях, то все источники энергии на Земле имеют мощность порядка 11 терраватт (10>12 ватт). А пиковая мощность лазера, созданного в Нижнем Новгороде, в 50 раз больше!

Если такое излучение попадает на вещество, то оно переходит в состояние, подобное тому, что, по всей вероятности, имеет место в недрах звезд. Так что новые лазерные комплексы открывают возможность моделировать в лаборатории рождение звезд, процессы, идущие в ускорителях заряженных частиц, ядерные и термоядерные взрывы.



Именно потому сотрудники Института прикладной физики РАН с самого начала работали в содружестве с исследователями Российского федерального ядерного центра (г. Саров), где многие десятилетия ведется разработка и совершенствование новых образцов атомного и термоядерного оружия. И то, что раньше могло быть экспериментально проверено лишь на полигоне, теперь отрабатывается в лабораторных условиях.

Пригодятся супермощные лазеры также при создании экспериментальных установок термоядерного синтеза, которые, наряду с традиционными токамаками, позволят сделать новые шаги в освоении новых источников энергии. Подобные установки могут принести пользу и в медицине, поскольку, несмотря на мощность, они столь компактны, что могут быть установлены в любой клинике.

Что же позволяет получать такие мощности? Особых подробностей вам, конечно, никто не расскажет, поскольку они-то и составляют «ноу-хау» разработчиков. Но некоторые общие принципы уже известны. Уже через 5 лет после изобретения лазера, в 1960 году, в результате ряда технологических скачков мощность компактных (настольных) лазеров достигла одного гигаватта (10>9 Вт). Затем на протяжении последующих двух десятилетий мощность настольных лазерных систем не увеличивалась, поскольку единственным способом ее повысить было увеличение размеров установки. Попытки повысить мощность при тех же габаритах приводили к тому, что лазеры разрушались.

Проблема была решена только в 1985 году, когда импульс научились растягивать во времени, а потом, многократно усилив, сжимать заново, многократно увеличивая тем самым его мощность. Ведь мощность, как известно, это отношение величины энергии ко времени.

Впрочем, понятия «растянуть» и «сжать» кажутся простыми лишь на бумаге. Практически это гораздо сложнее. И все же в последние годы ученым удалось добиться максимальной интенсивности световой энергии.

С достижением петаваттного уровня мощности лазерного излучения источники сверхсильных полей, помимо своих традиционных областей исследований и приложений, начинают проникать в области, традиционно принадлежащие физике высоких энергий с ее особым инструментарием — синхротронами и линейными ускорителями заряженных частиц высоких энергий.



Схема сверхмощного лазера:

>1 и 2 — зеркала; 3 и 4 — линзы; 5 и 6 — кристаллы, преобразующие излучение.


При этом компактность и дешевизна российских лазерных установок в сравнении с традиционными ускорителями и перспективы дальнейшего увеличения мощности излучения позволяют всерьез говорить даже о получении и изучении миниатюрных «черных дыр» непосредственно в лаборатории.



Кстати…

ЗАЧЕМ НАМ ИСКУССТВЕННОЕ СОЛНЦЕ?

Ученые десяти стран приступили к реализации проекта по созданию на земле частицы искусственного солнца. По сообщениям Би-би-си, в Америке и во Франции подходит к завершению строительство двух экспериментальных сверхмощных лазерных систем, которые станут сердцем установки термоядерного синтеза. Гигантские лазеры разместятся на площади размером с футбольное поле. Около 200 лазеров, расположенных по кругу, должны обеспечить такое сжатие атомов дейтерия и трития (в мишени диаметром около 2 мм), что температура внутри этого шарика станет более чем 100 миллионов градусов по Цельсию.

Ученые ожидают, что при этом ядра изотопов распадутся с выделением колоссальной энергии, как это происходит при взрыве сверхновой звезды.

ПО СЛЕДАМ СЕНСАЦИЙ

Автомобиль быстрее пули

Британские инженеры работают над созданием самого быстрого в мире автомобиля, который сможет развивать скорость 1000 миль в час (1600 км/ч). Эта машина, по словам разработчиков, будет мчаться не только быстрее скорости звука (1193 км/ч) — «звуковой барьер» на суше уже преодолен, — но и скорее, чем пуля, выпущенная из знаменитого пистолета Стечкина.



Если ученым удастся успешно завершить амбициозный проект, то скорость машины «Бладхаунд», которая названа так в честь сверхзвуковой зенитной британской ракеты, сможет превысить наземный рекорд скорости более чем на 400 км/ч. Существующий рекорд скорости, напомним, был установлен на соляном плато в американском штате Невада еще в 1997 году пилотом британских ВВС Энди Грином и равен 1220 км/ч.


Еще от автора Журнал «Юный техник»
Юный техник, 2013 № 02

Популярный детский и юношеский журнал.


Юный техник, 2012 № 07

Популярный детский и юношеский журнал.


Юный техник, 2000 № 09

Популярный детский и юношеский журнал.


Юный техник, 2003 № 02

Популярный детский и юношеский журнал.


Юный техник, 2004 № 04

Популярный детский и юношеский журнал.


Юный техник, 2003 № 07

Популярный детский и юношеский журнал.


Рекомендуем почитать
CCTV. Библия видеонаблюдения. Цифровые и сетевые технологии

Это 2-е издание популярной за рубежом и в России книги Владо Дамьяновски — всемирно известного эксперта в области видеонаблюдения и охранного телевидения, в которой обобщено около десяти лет теоретических исследований и более двадцати лет практического опыта. Книга ориентирована на довольно широкую читательскую аудиторию — менеджеров по системам безопасности, инсталляторов и интеграторов оборудования, консультантов, разработчиков и конечных пользователей. Кроме того, книга будет по достоинству оценена теми, кто собирается заняться системами видеонаблюдения и охранным телевидением.


Юный техник, 2005 № 02

Популярный детский и юношеский журнал.


Юный техник, 2007 № 01

Популярный детский и юношеский журнал.


Юный техник, 2009 № 12

Популярный детский и юношеский журнал.


Мечты в Сантьяго

Когда тридцать лет назад вооруженные силы Пиночета свергли чилийское правительство, они обнаружили коммуникационную систему революционеров - "социалистический интернет", опутавший всю страну. Его создатель? Эксцентричный ученый из Суррея. Энди Беккет -- о забытой истории Стаффорда Бира.


Правила работы с персоналом в организациях электроэнергетики Российской Федерации

Правила работы с персоналом в организациях электроэнергетики Российской Федерации (далее – Правила) разработаны на основании действующего законодательства Российской Федерации, государственных стандартов, существующих норм и правил и других нормативных документов.Настоящие правила устанавливают основные положения и требования к персоналу предприятий, организаций и учреждений, осуществляющих проектирование. эксплуатацию. ремонт. наладку. испытание. организацию и контроль работы оборудования, зданий и сооружений, входящих в состав электроэнергетического производства, независимо от форм собственности.Правила зарегистрированы в Минюсте России 16 марта 2000 г.