Юный техник, 2005 № 08 - [17]

Шрифт
Интервал

Как-то раз на одном из полигонов в нашей стране обстреливали бронебойными снарядами, летевшими со скоростью более 1500 м/с, толстую броневую плиту. При этом заметили, что она сильно раскалилась. Это вызвало у специалистов недоумение. Решили, что нагрев вызван переходом в тепло кинетической энергии снарядов. Для проверки этой гипотезы достаточно школьного курса физики. Подсчитали и удивились, что тепловая энергия броневой плиты была в четыре раза больше, чем кинетическая энергия попавших в нее снарядов!

Сначала заподозрили, что происходит химическое соединение сердечника снаряда со сталью плиты с выделением тепла. Но никаких продуктов химических реакций обнаружить не удалось. Стало ясно, что энергия берется откуда-то еще. Уж не происходят ли какие-нибудь ядерные процессы в уране? Нет, обстрел броневых плит снарядами с сердечниками из вольфрама и даже стали давал примерно такие же результаты: откуда-то появлялась огромная энергия. Когда же скорость снарядов снижали примерно до 1200 м/с и меньше, эффект исчезал. Плита нагревалась ровно настолько, сколько могла дать ей кинетическая энергия. Тут вспомнили и про одну из загадок астрофизики. Когда на землю падает железоникелевый метеорит со скоростью 700 м/с, то он создает крохотную воронку и сам остается почти целехоньким. Но, если скорость метеорита достигает 3–4 тыс. м/с, образуется громадная воронка, в которой удается найти лишь ничтожные следы метеорита. При этом размеры воронки также не удается объяснить только кинетической энергией небесного тела.

Загадку прояснили в начале 90-х годов прошлого века русские ученые профессор МГТУ Михаил Константинович Марахтанов и его сын, аспирант Калифорнийского университета в Беркли Алексей Марахтанов.

Все металлы имеют кристаллическую структуру, на создание которой затрачивается немалая энергия. Состоит кристалл из отдельных положительно заряженных атомов, расположенных в узлах кристаллической решетки. Между ними, как и между любыми одноименно заряженными телами, действуют силы отталкивания. Казалось бы, атомы должны немедленно разлететься в стороны. Но между ними постоянно находится некоторое количество движущихся электронов. Они выполняют роль клея, удерживающего атомы металла в узлах кристаллической решетки.

Электроны движутся хаотично. Как только один из них уходит со своего места, немедленно находившийся рядом с ним атом металла начинает выходить из узла, но появляется следующий электрон, и атом становится на место.

Если бы каким-то образом удалось вывести из кристалла все электроны, он бы немедленно распался на отдельные атомы, и при этом выделилась бы энергия, затраченная на создание кристалла. Это и происходит при ударе снаряда о броню. Если скорость его достаточно велика, то электроны, скрепляющие атомы кристаллов его сердечника, по инерции вылетают, а атомы под действием электрического отталкивания разлетаются в стороны. Происходит взрыв материала сердечника. А энергия его не меньше, чем энергия взрыва тротила. Скажем в скобках: зная это, можно понять, почему немецкие снаряды из урана вели себя примерно как вольфрамовые — скорость их была невелика. И лишь в 60-х годах достигла нужной величины.

Способность кристаллов металла взрываться возрастает по мере роста их порядкового номера в таблице Менделеева. Наиболее сильно она выражена у урана и вольфрама, наименее — у алюминия. Процесс взрыва кристаллической решетки за счет удара о преграду сегодня имеет лишь сугубо военное применение. Нет сомнения, что его можно использовать и иначе.

М. и А. Марахтановы нашли и иной способ высвобождения энергии кристалла. Но об этом — в следующий раз.

А. ВАРГИН

ЗАОЧНАЯ ШКОЛА РАДИОЭЛЕКТРОНИКИ

Поверь ушам своим



В том, что стереозвук — это хорошо, убеждать никого не надо. Но по радио он звучит только в УКВ-диапазоне. В области от коротких до длинных волн, у которых немало поклонников, стереофонических передач нет. Магнитные кассеты и CD-диски выпускаются только со стереозаписью, есть еще множество малогабаритных магнитол, которые воспроизводят и записывают лишь моно, и все же…

Вспомним особенности нашего слуха и принцип действия стереофонического устройства. Когда мы слушаем в зале концерт некоего оркестра, звучание инструментов, находящихся левее и правее нас, воспринимается ухом несколько по-разному, что и создает стереофоническую картину. Чтобы повторить такой эффект, на магнитную ленту одновременно записывают звук на две дорожки, но с микрофонов, расположенных у левого и правого крыла группы исполнителей.

Стереоэффект при последующем воспроизведении обеспечивается двухдорожечной магнитной головкой, сигналы с которой поступают раздельно на усилители «левого» и «правого»; каждый из них работает на свою динамическую головку. Они разносятся на некоторое расстояние левее и правее слушателя. Если мы располагаем только одним каналом, на вход которого поступает монофонический сигнал, а на выходе всего одна динамическая головка, второй канал можно создать искусственно, добавив еще одну «облегченную» головку. Электрическая схема такого акустического выхода достаточно проста (рис. 1).


Еще от автора Журнал «Юный техник»
Юный техник, 2000 № 09

Популярный детский и юношеский журнал.


Юный техник, 2003 № 07

Популярный детский и юношеский журнал.


Юный техник, 2010 № 08

Популярный детский и юношеский журнал.


Юный техник, 2003 № 02

Популярный детский и юношеский журнал.


Юный техник, 2005 № 04

Популярный детский и юношеский журнал.


Юный техник, 2004 № 04

Популярный детский и юношеский журнал.


Рекомендуем почитать
Юный техник, 2014 № 02

Популярный детский и юношеский журнал.


Материалы для ювелирных изделий

Рассмотрены основные металлические материалы, которые применяются в ювелирной технике, их структура и свойства. Подробно изложены литейные свойства сплавов и приведены особенности плавки драгоценных металлов и сплавов. Описаны драгоценные, полудрагоценные и поделочные камни, используемые в ювелирном деле. Приведены примеры уникальных ювелирных изделий, изготовленных мастерами XVI—XVII веков и изделия современных российских мастеров.Книга будет полезна преподавателям, бакалаврам, магистрам и аспирантам, а так же учащимся колледжей и читателям, которые желают выбрать материал для изготовления ювелирных изделий в небольших частных мастерских.Рекомендовано Министерством образования и науки Российской Федерации в качестве учебника для бакалавров, магистров по специальности 26140002 «Технология художественной обработки материалов» и аспирантов специальности 170006 «Техническая эстетика и дизайн».


Грузовые автомобили. Охрана труда

Автомобиль – это источник повышенной опасности, поэтому управлять им могут только люди, прошедшие специальное обучение, имеющие медицинскую справку, стажировку.Книга посвящена вопросу охраны труда. В ней подробно изложены общие положения, которыми должны руководствоваться наниматели, внеплановые и текущие инструктажи для водителей, а также другие немаловажные моменты, обеспечивающие безопасность водителя.Отдельно рассмотрены дорожно-транспортные происшествия и их причины, исходные данные для проведения автотранспортной экспертизы, модели поведения в случаях попадания в ДТП, приближения к месту аварии, а также общий порядок оказания помощи и порядок оформления несчастных случаев.Кроме того, в книге можно найти информацию по правилам перевозки негабаритных и опасных грузов, а также системе информации об опасности (СИО).



Столярные и плотничные работы

Умение работать с благородным материалом – деревом – всегда высоко ценилось в России. Но приобретение умений и навыков мастера плотничных и столярных работ невозможно без правильного подхода к выбору материалов, инструментов, организации рабочего места, изучения технологических тонкостей, составляющих процесс обработки древесины. Эта книга покажет возможности использования этих навыков как в процессе строительства деревянного дома, так и при изготовлении мебели своими руками, поможет достичь определенных высот в этом увлекательном и полезном процессе.


Технический регламент о требованиях пожарной безопасности. Федеральный закон № 123-ФЗ от 22 июля 2008 г.

Настоящий Федеральный закон принимается в целях защиты жизни, здоровья, имущества граждан и юридических лиц, государственного и муниципального имущества от пожаров, определяет основные положения технического регулирования в области пожарной безопасности и устанавливает общие требования пожарной безопасности к объектам защиты (продукции), в том числе к зданиям, сооружениям и строениям, промышленным объектам, пожарно-технической продукции и продукции общего назначения. Федеральные законы о технических регламентах, содержащие требования пожарной безопасности к конкретной продукции, не действуют в части, устанавливающей более низкие, чем установленные настоящим Федеральным законом, требования пожарной безопасности.Положения настоящего Федерального закона об обеспечении пожарной безопасности объектов защиты обязательны для исполнения: при проектировании, строительстве, капитальном ремонте, реконструкции, техническом перевооружении, изменении функционального назначения, техническом обслуживании, эксплуатации и утилизации объектов защиты; разработке, принятии, применении и исполнении федеральных законов о технических регламентах, содержащих требования пожарной безопасности, а также нормативных документов по пожарной безопасности; разработке технической документации на объекты защиты.Со дня вступления в силу настоящего Федерального закона до дня вступления в силу соответствующих технических регламентов требования к объектам защиты (продукции), процессам производства, эксплуатации, хранения, транспортирования, реализации и утилизации (вывода из эксплуатации), установленные нормативными правовыми актами Российской Федерации и нормативными документами федеральных органов исполнительной власти, подлежат обязательному исполнению в части, не противоречащей требованиям настоящего Федерального закона.