Юный техник, 2005 № 04 - [21]

Шрифт
Интервал

При большой частоте смены кадров возникает зрительная иллюзия плавного перетекания очертаний и расцветок изображения. Если свечение пары близко посаженных светодиодов с красным и зеленым свечением (еще лучше — двухцветный однокристальный излучатель) модулировать поочередно с частотой 100…200 герц, наш глаз воспримет это как некоторое новое свечение. Цветом его можно управлять, изменяя скважность включенных состояний. Таким образом, располагая двумя исходными — красным и зеленым — цветами, можно получить четыре, с дополнительными оранжевым и желтым, занимающими в радужном спектре промежуточные положения.

На рисунке 1 схематически изображено одно из возможных воплощений электронного «трансформатора цветов».



На логических ячейках DD1.1 и DD1.2 типа 2И-НЕ построен самовозбуждающийся мультивибратор, симметрию которого можно изменять с помощью регулируемой цепочки обратной связи VD1, Rl, VD2, R2, управляемой переменным резистором R3. Изменяя положение его ползунка, можем варьировать в значительных пределах длительность полупериодов мультивибратора. Выход последнего через буферные ячейки DD1.3, DD1.4 управляет работой двухтактного ключевого каскада на транзистрорах VT1, VT2.

Рассмотренная схема предназначена в основном для показа принципа «трансформации» цвета излучения; чтобы построить практическую конструкцию, например, электронно-оптической броши либо карнавальной короны, понадобится управлять группами параллельно включенных светодиодов. При указанном на рисунке 1 типе транзисторов количество излучателей в каждой группе может быть порядка пяти.

Поскольку при этом емкости и габариты конденсаторов С2, С3 существенно возрастут, целесообразно видоизменить выходной каскад устройства, как показано на рисунке 2.



Заметим, что введенные в схему стабисторы VD3, VD4 обеспечивают запирание цепей светодиодов при соответствующих полупериодах мультивибратора (на рис. 2 условно не показанного). Для получения более мощного излучения было бы заманчиво использовать вместо светодиодов компактные люминесцентные лампы с резьбовым цоколем.

Сделать конструкцию интереснее можно, если автоматизировать изменения асимметрии мультивибратора, а также разнообразить цветовые пары, включая в них синий (окрашенный белый) и красный цвета, создающие фиолетовое свечение с оттенками.

Ю.ПРОКОПЦЕВ



ЧИТАТЕЛЬСКИЙ КЛУБ



Вопрос — ответ


Слышал, что человек, у которого выпадают зубы, в то же время теряет и память. Неужто это правда? Какая взаимосвязь между зубами и памятью?

Андрей Колошенко,

г. Ставрополь

Действительно, шведские ученые обнаружили удивительную взаимосвязь между стоматологическими заболеваниями и… функцией памяти. Как оказалось, чем меньше у человека зубов, тем хуже его способности к запоминанию. Профессор из университета города Умеа Ян Бедхал выяснил, что зубные нервы напрямую связаны с нервными центрами, отвечающими за работу мозга. Из-за удаления зубов функции нервных волокон нарушаются, и нейроны в зоне мозга, отвечающей за память, начинают стремительно разрушаться. Этот процесс способен серьезно повлиять на способность к запоминанию, особенно на так называемую «короткую память», например, когда человек пытается и не может вспомнить нужное слово. Причем если зуб расшатался и выпал сам по себе, к примеру, в результате болезни десен, — это еще полбеды. Наибольший урон памяти наносит его насильственное удаление. В результате экспериментов на приматах было доказано, что одновременное удаление сразу нескольких зубных нервов может привести к полной амнезии.

Результаты открытия поразили даже самих ученых: кто бы мог подумать, что, садясь в кресло стоматолога, чтобы избавиться от больного зуба, мы каждый раз лишаемся части памяти и медленно разрушаем свой мозг! По данным врачей, именно в удаленных коренных зубах кроется причина возрастного слабоумия и многих других болезней, связанных с работой мозга. Для их развития достаточно отсутствия пяти зубов, при этом неважно, будут они потом протезированы или нет. Так что доктора настоятельно рекомендуют заботиться о здоровье зубов.

ДАВНЫМ-ДАВНО



В 1800 году итальянский ученый Алессандро Вольта опустил в банку с кислотой две пластинки — из цинка и из меди — и соединил их проволокой. Стало видно, что в сосуде происходит нечто необычное: цинковая растворяется, а на медной выделяются пузырьки газа. Вольта предположил, что по проволоке протекает ток. Чтобы это доказать, он разорвал цепь и присоединил ее к лапкам лягушки. Они вздрогнули — значит, ток есть!

Так был изобретен «элемент Вольта» — первый гальванический элемент. Для удобства пользования Вольта придал ему форму столба, состоящего из спаянных между собою кружков цинка, меди и сукна, пропитанного серной кислотой. Вольтов столб высотою полметра развивал напряжение, от которого вздрагивала рука человека. Создаваемый им ток был в миллионы раз сильнее токов, получаемых ранее от электростатических машин. Поэтому за открытием Вольты последовали новые. В том же 1800 году Корляйль и Никольсон обнаружили разложение воды на Н>2 и О>2.

В 1803 году русский физик Василий Владимирович Петров сделал самый мощный в мире вольтов столб, составленный из 4200 медных и цинковых кружков. (Развиваемое им напряжение — около 5000 В — могло быть смертельно для человека.) Однажды В.В.Петров попробовал пропустить его ток через стержень из древесного угля. Уголек разломился, и в трещине возникло ослепительно яркое свечение. Так была открыта электрическая дуга, применяемая в электросварке.


Еще от автора Журнал «Юный техник»
Юный техник, 2000 № 09

Популярный детский и юношеский журнал.


Юный техник, 2010 № 08

Популярный детский и юношеский журнал.


Юный техник, 2003 № 07

Популярный детский и юношеский журнал.


Юный техник, 2003 № 02

Популярный детский и юношеский журнал.


Юный техник, 2010 № 01

Популярный детский и юношеский журнал.


Юный техник, 2011 № 06

Популярный детский и юношеский журнал.


Рекомендуем почитать
Юный техник, 2014 №  01

Популярный детский и юношеский журнал.


Юный техник, 2013 № 12

Популярный детский и юношеский журнал.


Юный техник, 2013 № 11

Популярный детский и юношеский журнал.


В поисках марсианских сокровищ и приключений

«Новый Марс» — это проект жизни на Марсе через 200 лет. Вторая книга, которая окажется на Марсе. Первая — «Будущее освоение Марса, или Заповедник „Земля“». «Новый Марс» включает в себя 2 части: «Марсианская практика в лето 2210» и «В поисках марсианских сокровищ и приключений». Перед вами продолжение художественной повести с далеко ведущей целью: превращение планеты Земля в ядро глобального галактического Заповедника!


Поистине светлая идея. Эдисон. Электрическое освещение

Томас Альва Эдисон — один из тех людей, кто внес наибольший вклад в тот облик мира, каким мы видим его сегодня. Этот американский изобретатель, самый плодовитый в XX веке, запатентовал более тысячи изобретений, которые еще при жизни сделали его легендарным. Он участвовал в создании фонографа, телеграфа, телефона и первых аппаратов, запечатлевающих движение, — предшественников кинематографа. Однако нет никаких сомнений в том, что его главное достижение — это электрическое освещение, пришедшее во все уголки планеты с созданием лампы накаливания, а также разработка первой электростанции.


Юный техник, 2001 № 08

Популярный детский и юношеский журнал.