Наверное, не только мне интересно знать: почему для запусков космических кораблей, в особенности межпланетных зондов, так скрупулезно выбирают время старта? Из каких соображений космические баллистики выбирают ту или иную траекторию движения межпланетного зонда?
Владимир Панкратов,
Санкт-Петербург
Схема полета космического корабля «Аполлон» к Луне и обратно.
>Цифрами обозначено: 1 — старт с космодрома; 2 — выход на орбиту ИСЗ; 3 — второй старт; 4 — перестроение отсеков; 5 — отделение последней ступени; 6 — торможение; 7 — переход на селеноцентрическую орбиту; 8 — отделение лунной кабины; 9 — торможение; 10 — посадка; 11 — старт с Луны; 12 — сбрасывание взлетной ступени; 13 — отстыковка взлетной ступени с основным блоком; 14 — переход на траекторию полета к Земле; 15 — разделение; 16 — вход в атмосферу; 17 — приводнение.
Из пушки на Луну?
Помните, в знаменитом романе герои Жюля Верна строят громадную пушку и выстреливают из нее снаряд с людьми в сторону Луны?.. Критики говорили в свое время, что в таком снаряде путешественники погибли бы от перегрузок еще при выстреле.
Эта проблема, между прочим, решается относительно просто, если вместо пороха в пушке использовать электромагнитный ускоритель, постепенно разгоняющий снаряд, словно сердечник в катушке электромагнита. А тот факт, что путешественники не попали на Луну, поскольку прицел оказался неточным, почему-то привлекает меньше внимания. Между тем, для специалистов выбор траектории космического аппарата — задача из задач.
Да, казалось бы, чего проще: как только Луна покажется на небосводе, наводи пушку прямой наводкой — и огонь! На практике все иначе.
Во-первых, Луна представляет собой движущуюся цель. А каждый охотник знает, что по летящей цели нужно стрелять с упреждением. То есть целиться не в саму цель, а в то место, где она окажется, когда пуля преодолеет расстояние между ружьем и целью. Кроме того, движется сама Земля. Причем не только вокруг собственной оси, но и мчится вместе с Луной вокруг Солнца. А это тоже добавляет сложности.
Еще сложнее попасть в Венеру или, скажем, в Марс. Здесь приходится учитывать еще множество дополнительных условий: скорости перемещения обеих планет — Земли и Марса по своим орбитам, их взаимное местоположение в момент запуска межпланетного зонда и в момент приближения к конечной точке маршрута, влияние на движение гравитационных полей Солнца, планет-гигантов…
В общем, приходится учитывать столько факторов, что даже современные суперкомпьютеры должны работать многие часы подряд, прежде чем выдадут исходные данные для точного космического «выстрела». И это еще не все…
Одиссея «Аполлона»
Точность межпланетных расчетов не раз выверялась, например, при посылке автоматических исследовательских зондов на Луну. И все же при этом не раз случались накладки.
Станция «Луна-1», стартовавшая 2 января 1959 года, промахнулась мимо спутника нашей планеты и улетела неизвестно куда. Прицел «Луны-2» оказался точнее, и она врезалась в поверхность Луны. С одной стороны, хорошо, что расчеты баллистиков оказались верны, но много ли толку от такого «выстрела»?
Стало понятно, что нужно контролировать не только направление движения межпланетного зонда, но и менять его скорость по мере надобности.
Вспомните, что произошло с «ядром», выпущенным из пушки в романе Жюля Верна. Путешественники хоть и не попали на Луну, но, долетев до нее, развернулись в поле тяготения естественного спутника нашей планеты, да так удачно, что вернулись затем обратно на Землю.
И тут, надо сказать, им сказочно повезло. Потому что ни один специалист даже в наши дни не возьмется рассчитать подобный маршрут с достаточно высокой степенью вероятности. Все величины, которые приходится учитывать, можно измерить лишь с какой-то степенью допуска: многие из них все время меняются, являются в известной степени величинами случайными. И время запуска, и скорость стартующей ракеты, даже скорость и направление ветра при запуске — все это можно предсказать лишь с определенной степенью точности. А коль приблизительны исходные данные, значит, получишь и приблизительный результат.
Казалось бы, как старались баллистики, просчитывая траекторию полета корабля Ю.А. Гагарина! А когда тот вышел на орбиту, его траектория оказалась на несколько десятков километров выше расчетной. Это означало: если на расчетной орбите корабль «Восток» мог затормозиться самостоятельно, используя верхние слои атмосферы, и сесть примерно через неделю после старта (на этот срок были рассчитаны аварийные запасы воздуха, воды и еды на борту), то с реальной траектории корабль смог бы спуститься лишь через месяц…
Экипаж «Аполлона-13».
Все обошлось благодаря тому, что на борту корабля имелась собственная тормозная установка, позволившая подкорректировать траекторию полета. И «Восток» с первым космонавтом на борту благополучно приземлился уже через 108 минут после старта.
Иметь возможность исправить ошибки, подкорректировать траекторию во время полета необходимо по многим причинам.