Юный техник, 2004 № 01 - [17]
Жидкость, в которой происходит кавитация, светится, значит, эти кванты действительно существуют. Это свечение называется сонолюминесценцией. Открытое в 1933 году, оно в рамках классической науки объяснения не нашло.
Но перейдем от теории к практике. Известно много способов получения кавитации. Например, в медицинских ингаляторах — приборах для получения тонко распыленных жидких лекарств она создается при помощи ультразвука. Но КПД применяемого здесь электронного ультразвукового генератора настолько мал, что получаемый выигрыш энергии практически не заметен.
Чтобы получить дополнительное тепло, чаще используют механическую энергию. Одну из самых мощных установок для этой цели создал омский изобретатель В.Ф.Кладов. Он предложил центробежный насос, который при своей работе создает прерывистый поток жидкости, и при работе с водой получил двукратный выигрыш в энергии. Испытал Кладов и другие жидкости. Фтористый кремний, например, дал десятикратный выигрыш. Другие ученые, напротив, при самых тщательных измерениях ее не нашли.
Мы предлагаем вам повторить установку Л.Ларионова. Она состоит из обычного насосного агрегата, применяемого для подачи воды на верхние этажи домов. Был взят стандартный агрегат с мотором мощностью 4 кВт. К нему присоединен замкнутый контур из водопроводной трубы, в которую вставлено кавитационное сопло и добавлены некоторые другие элементы.
При работе на обычной воде каждый киловатт-час электроэнергии, взятый насосом от сети, давал 1,5 кВт/ч тепла. Такой эффект можно получить от домашнего кондиционера, работающего в режиме теплового насоса. Но он стоит не менее $ 4000. Водяной насос же почти в сто раз дешевле.
Главная часть установки — сопло. Как видите на рисунке, оно сначала сужается, а затем плавно расширяется. Проходя через сужающуюся часть, поток, по закону Бернулли, увеличивает свою скорость, а давление в нем снижается настолько, что становится равно давлению насыщенных паров воды. При этом вода закипает, в ней образуется множество наполненных паром пузырьков. Далее поток поступает в расширяющуюся часть сопла. Здесь скорость его уменьшается, а давление восстанавливается, и пузырьки начинают схлопываться. Процесс этот завершается уже после выхода из сопла и сопровождается сонолюминесценцией. В эксперименте ее легко наблюдать через специальное окошко в трубе. Видно нечто похожее на факел сварочной горелки.
Устройство теплогенератора:
>1 — насосный агрегат; 2 и 4 — манометры; 3 — сопло; 5 — регулятор статического давления; 6 — дроссельный вентиль; 7 — профиль сопла (из работы немецких ученых).
Добавление в воду поваренной соли это свечение усиливает. При этом значительно возрастает и тепловыделение. Как показывают зарубежные исследования, наибольшее усиление достигается, когда в литре воды растворено около 120 г соли.
Эффективность установки сильно зависит от формы сопла. Когда угол расширяющейся части слишком велик, может произойти резкий рост сопротивления, и эффективность снизится.
Для получения высокого прироста тепла важно добиться, чтобы давление жидкости после выхода из сопла по возможности восстанавливалось. Для этого нужно измерять при помощи манометров давление до и после сопла и регулировать сопротивление потоку дроссельным краном.
Установка имеет устройство регулировки начального статического давления воды при помощи поршня, поджимаемого винтом. Чтобы добиться наиболее эффективной работы, потребуется кропотливая наладочная работа, связанная с необходимостью измерения количества выделяющегося тепла и расхода электроэнергии. Если электроэнергию можно измерять при помощи счетчика, то измерение тепла сложнее. Нужно предварительно взвесить и подсчитать удельную теплоемкость всего агрегата, а потом, измеряя рост его температуры после запуска, вычислять выделившееся количество теплоты, затем, разделив количество выделившегося тепла на затраченную за это время энергию, получить КПД или, точнее, эффективность теплогенерирующей установки. Но грубо настроить систему вы можете и по температуре трубы.
Если установка отлажена на обычной воде, ее можно непосредственно подключить к действующей отопительной системе. Однако опыт показывает, что в первые дни работы под действием кавитации будет очень интенсивно смываться имеющаяся в трубах грязь. Теплогенератор придется несколько раз разбирать и чистить. Но грязь рано или поздно закончится, и вы сможете спокойно пользоваться дешевым теплом.
Очень, конечно, заманчиво применить соленую воду, но помните: соль разъедает металлические трубы, а использование промежуточного теплообменника связано с дополнительными потерями, которые могут свести эффективность соли к нулю.
А.ИЛЬИН
Вниманию читателей предлагается книга, посвященная созданию первого поколения отечественных обитаемых подводных аппаратов, предназначенных для работы на глубинах более 1000 м История подводного флота, несмотря на вал публикации последнего времени, остается мало известной не только широкой общественности, но и людям, всю жизнь проработавшим в отрасли Между тем. сложность задач, стоящих перед участниками работ по «глубоководной тематике» – так это называлось в Министерстве судостроительной промышленности – можно сравнить только с теми, что пришлось решать создателям космических кораблей Но если фамилии Королева и Гагарина известны всему миру, го о главном конструкторе глубоководной техники Юрии Константиновиче Сапожкове или первом капитане-глубоководнике Михаиле Николаевиче Диомидове читатель впервые узнает из этой книги.
Рассмотрены основные металлические материалы, которые применяются в ювелирной технике, их структура и свойства. Подробно изложены литейные свойства сплавов и приведены особенности плавки драгоценных металлов и сплавов. Описаны драгоценные, полудрагоценные и поделочные камни, используемые в ювелирном деле. Приведены примеры уникальных ювелирных изделий, изготовленных мастерами XVI—XVII веков и изделия современных российских мастеров.Книга будет полезна преподавателям, бакалаврам, магистрам и аспирантам, а так же учащимся колледжей и читателям, которые желают выбрать материал для изготовления ювелирных изделий в небольших частных мастерских.Рекомендовано Министерством образования и науки Российской Федерации в качестве учебника для бакалавров, магистров по специальности 26140002 «Технология художественной обработки материалов» и аспирантов специальности 170006 «Техническая эстетика и дизайн».
Автомобиль – это источник повышенной опасности, поэтому управлять им могут только люди, прошедшие специальное обучение, имеющие медицинскую справку, стажировку.Книга посвящена вопросу охраны труда. В ней подробно изложены общие положения, которыми должны руководствоваться наниматели, внеплановые и текущие инструктажи для водителей, а также другие немаловажные моменты, обеспечивающие безопасность водителя.Отдельно рассмотрены дорожно-транспортные происшествия и их причины, исходные данные для проведения автотранспортной экспертизы, модели поведения в случаях попадания в ДТП, приближения к месту аварии, а также общий порядок оказания помощи и порядок оформления несчастных случаев.Кроме того, в книге можно найти информацию по правилам перевозки негабаритных и опасных грузов, а также системе информации об опасности (СИО).
Умение работать с благородным материалом – деревом – всегда высоко ценилось в России. Но приобретение умений и навыков мастера плотничных и столярных работ невозможно без правильного подхода к выбору материалов, инструментов, организации рабочего места, изучения технологических тонкостей, составляющих процесс обработки древесины. Эта книга покажет возможности использования этих навыков как в процессе строительства деревянного дома, так и при изготовлении мебели своими руками, поможет достичь определенных высот в этом увлекательном и полезном процессе.
Настоящий Федеральный закон принимается в целях защиты жизни, здоровья, имущества граждан и юридических лиц, государственного и муниципального имущества от пожаров, определяет основные положения технического регулирования в области пожарной безопасности и устанавливает общие требования пожарной безопасности к объектам защиты (продукции), в том числе к зданиям, сооружениям и строениям, промышленным объектам, пожарно-технической продукции и продукции общего назначения. Федеральные законы о технических регламентах, содержащие требования пожарной безопасности к конкретной продукции, не действуют в части, устанавливающей более низкие, чем установленные настоящим Федеральным законом, требования пожарной безопасности.Положения настоящего Федерального закона об обеспечении пожарной безопасности объектов защиты обязательны для исполнения: при проектировании, строительстве, капитальном ремонте, реконструкции, техническом перевооружении, изменении функционального назначения, техническом обслуживании, эксплуатации и утилизации объектов защиты; разработке, принятии, применении и исполнении федеральных законов о технических регламентах, содержащих требования пожарной безопасности, а также нормативных документов по пожарной безопасности; разработке технической документации на объекты защиты.Со дня вступления в силу настоящего Федерального закона до дня вступления в силу соответствующих технических регламентов требования к объектам защиты (продукции), процессам производства, эксплуатации, хранения, транспортирования, реализации и утилизации (вывода из эксплуатации), установленные нормативными правовыми актами Российской Федерации и нормативными документами федеральных органов исполнительной власти, подлежат обязательному исполнению в части, не противоречащей требованиям настоящего Федерального закона.