Юный техник, 2003 № 07 - [18]

Шрифт
Интервал

В 1900 году местный археолог-любитель с немецкой фамилией Зибольд прошел вдоль остатков водопровода и обнаружил, что свое начало он берет из большой каменной чаши, соединенной трубами с расположенными поблизости огромными кучами щебня. В тот момент воды в чаше практически не было. Но Зибольд понял, откуда в водопровод поступала вода: по утрам на камнях возникали капли росы, эту воду и получал город.

При случае попробуйте каплю утренней росы на язык. Она удивительно вкусна, да к тому же, как утверждают знахари, обладает целебной силой. Так что жителям Кафы можно позавидовать! Но что мешает вам попытаться за городом добыть достаточное количество чистой росы, если это практически сразу удалось Зибольду?

Пытаясь воспроизвести древний источник воды, он сделал чашу из бетона (см. рис. 1) и соединил ее с сооруженной рядом кучей щебня. (Ее он назвал пирамидой.)



Рис. 1


Воду, как сказано, Зибольд получил почти сразу, но очень мало.

Археолог принялся экспериментировать. Применял разные камни, особым образом складывал пирамиды. Постепенно у Зибольда дело пошло на лад: производительность «установки» превысила 400 л воды в сутки!

Любопытно, что тогда же и во Франции находили старинные устройства, башни для собирания росы. Их попытались восстановить (рис. 2), но воды они уже почти не давали…



Рис. 2


Вскоре началась Первая мировая война, затем — революция, и стало не до воды. Археолог умер, и сведений о его работе почти не сохранилось.

Так что нам с вами работу придется начинать с нуля.

Разберемся сначала, что такое роса. В воздухе всегда есть какое-то количество паров воды. При температуре 20 °C, например, кубометр воздуха может содержать до 15 г воды, а при 30° — 29 г. При охлаждении воздуха эта влага конденсируется и выпадает в виде капель. Мы видим их на остывших за ночь камнях, траве и цветах.

При полной конденсации всех водяных паров, содержащихся в атмосфере, на поверхность земли выпадало бы 120 л воды на квадратный метр — как при тропическом ливне!

Почему древние использовали для получения воды именно щебенку? Это был самый удобный подручный материал. Сложенный в горку, щебень «дышал» — успевал за ночь остыть, а днем хорошо продувался влажным воздухом, и потому на каждом его камешке конденсировалась влага.

Но не все так просто. Если пирамида сложена из камней с неровной поверхностью, при прохождении потока воздуха в каналах между камнями возникают вихри (см. рис. 3).



Рис. 3


Они усиливают передачу тепла от воздуха к камням и обратно. Однако при этом сильно возрастает сопротивление. Оно уменьшает объем воздуха, проходящего через пирамиду, и уменьшает количество получаемой росы.

Если мы сложим пирамиду из гладких камней, воздух пройдет через щель между ними без завихрений (рис. 4.).



Рис. 4


Сопротивление потоку будет мало, но мала окажется и передача тепла, поскольку у поверхности канала образуется тонкий пограничный слой, в нем скорость воздуха у поверхности камня близка к нулю.

Воздух перемешиваться не будет, и передача тепла в поперечном направлении происходит только за счет теплопроводности воздуха, а она очень мала: пограничный слой, словно ватное одеяло, закрывает поверхность камня и не дает ему обмениваться теплом с основной массой воздуха.

Как же разрушить пограничный слой и при этом не уменьшить объем проходящего через канал воздуха? Вот один из способов.

Щебень заменяем плитками из цемента или обожженной глины. На их поверхности (рис. 5) нужно сделать несколько прямоугольных выступов. Важно, чтобы расстояние между ними было раз в 12 больше высоты.



Рис. 5


Набегая на выступ, поток опрокидывает пограничный слой, заменяя его свежей порцией воздуха. В канале такой формы передача тепла увеличивается в три-четыре раза, а сопротивление остается таким же, как и в гладком канале.

Напомним, что конденсация, образование росы, происходит за счет охлаждения воздуха, отдачи им своего избыточного тепла стенке канала. Но после начала конденсации возникают новые затруднения в передаче тепла. На поверхности канала появляется влага, которая является теплоизолятором. Подобная ситуация возникает, например, в конденсаторах паровых турбин. Для борьбы с пленкой воды, покрывающей внутреннюю поверхность трубы конденсатора, в ней делают поперечные желобки. Сделаем их и мы в наших искусственных камнях для пирамиды, добывающей воду из воздуха (рис. 6).



Как мы уже говорили, нам с вами придется открыть секрет этого древнего достижения заново. А начать эту работу можно с сооружения небольших — высотою 1–1,5 м пирамид и кропотливого изучения их работы.

Пробную пирамиду можно соорудить из подручного материала на листе полиэтилена и вывести специальную канавку в сосуд для сбора росы. Очень важно наладить измерение температуры на разной глубине внутри пирамиды. Для этого при ее строительстве нужно заранее заложить внутрь пирамиды несколько металлических трубок, в которые можно было бы опускать термометры. После этого и начнется самая настоящая научная работа — с ежедневной записью температуры и количества полученной воды.

Проверить проницаемость пирамиды для воздуха можно при помощи дыма, например, если поджечь кучу старых листьев при соответствующем направлении ветра. Ну а все данные, полученные при наблюдении за поведением пирамиды, позволят вам ее улучшать и, в конце концов, добиться максимальной производительности. Имейте только в виду, что, увы, даже росу в городе лучше не пить.


Еще от автора Журнал «Юный техник»
Юный техник, 2000 № 09

Популярный детский и юношеский журнал.


Юный техник, 2010 № 08

Популярный детский и юношеский журнал.


Юный техник, 2003 № 02

Популярный детский и юношеский журнал.


Юный техник, 2005 № 04

Популярный детский и юношеский журнал.


Юный техник, 2010 № 01

Популярный детский и юношеский журнал.


Юный техник, 2011 № 06

Популярный детский и юношеский журнал.


Рекомендуем почитать
Юный техник, 2014 №  01

Популярный детский и юношеский журнал.


Юный техник, 2013 № 12

Популярный детский и юношеский журнал.


Юный техник, 2013 № 11

Популярный детский и юношеский журнал.


В поисках марсианских сокровищ и приключений

«Новый Марс» — это проект жизни на Марсе через 200 лет. Вторая книга, которая окажется на Марсе. Первая — «Будущее освоение Марса, или Заповедник „Земля“». «Новый Марс» включает в себя 2 части: «Марсианская практика в лето 2210» и «В поисках марсианских сокровищ и приключений». Перед вами продолжение художественной повести с далеко ведущей целью: превращение планеты Земля в ядро глобального галактического Заповедника!


Поистине светлая идея. Эдисон. Электрическое освещение

Томас Альва Эдисон — один из тех людей, кто внес наибольший вклад в тот облик мира, каким мы видим его сегодня. Этот американский изобретатель, самый плодовитый в XX веке, запатентовал более тысячи изобретений, которые еще при жизни сделали его легендарным. Он участвовал в создании фонографа, телеграфа, телефона и первых аппаратов, запечатлевающих движение, — предшественников кинематографа. Однако нет никаких сомнений в том, что его главное достижение — это электрическое освещение, пришедшее во все уголки планеты с созданием лампы накаливания, а также разработка первой электростанции.


Юный техник, 2001 № 08

Популярный детский и юношеский журнал.