ЗРИМЫЙ ЗВУК. Уникальные возможности нового ультразвукового микроскопа продемонстрировали на 1-м Международном салоне инноваций и инвестиций специалисты Института биохимической физики РАН. Вот что об этом рассказал заведующий лабораторией акустической микроскопии Вадим Левин:
— Акустический микроскоп работает на частоте до 200 МГц. Это позволяет с его помощью видеть то, что невозможно узреть иными методами. Дело в том, что ультразвук хорошо проникает в объемы различных непрозрачных сред — композитов, полимеров, металлов. В связи с этим широки и горизонты применения новой техники — от биологии до нанотехнологии. В отличие от обычного УЗИ, здесь частота сканирования увеличена в 10–50 раз, поскольку соответственно уменьшена длина сканирующей волны. Таким образом появляется возможность получить и более четкое изображение с выделением мельчайших деталей. Видны даже отдельные клетки, стала хорошо различима структура тканей, те механизмы, с помощью которых клетка движется и сохраняет свою форму.
Этот же прибор используется для изучения структуры композитов на основе углерода, которые ныне становятся основными материалами авиационной и космической техники. С его помощью также проводятся исследования фуллеренов и фуллеритов — шарообразных структур, представляющих собой новое, четвертое, состояние углерода. Среди них оказались материалы даже тверже алмаза, который до недавнего времени считался самым твердым веществом на планете.
СЕНСАЦИИ НАУКИ
Константы тоже изменяются?!
«Даже фундаментальные законы природы, как мы понимаем сегодня, могут понемногу меняться по мере старения Вселенной, — пишет авторитетнейший научный журнал «Физикал Ревью Летерс». — И это может привести к радикальному пересмотру современных физических представлений, стать вызовом нашему пониманию об установившемся характере мироздания».
Работа, послужившая поводом для этого высказывания, выполнена под руководством доктора Джона Веба из Университета Нового Южного Уэльса в Сиднее, Австралия. Кроме него, в научную группу входили трое других ученых из того же университета — Майкл Мерфи, Виктор Ландау и Владимир Дзюба, а также физик из Кембриджского университета в Великобритании доктор Джон Барроу и три американских астрофизика — доктора Кристофер Черчиль, Джейсон Прохазка и Артур Вольф. Словом, собрался достаточно авторитетный международный научный коллектив.
Рецензенты, проверявшие работу, не нашли в ней явных ошибок. Но поскольку последствия этого открытия для всей нашей системы физических знаний столь значимы, а отклонения результатов измерений ожидаемых величин малы, многие ученые все же сомневаются, что открытие выдержит проверку временем.
Началось же все с того, что исследователи с помощью самого большого телескопа в мире, 9-метрового рефлектора «Кек», расположенного на Гавайских островах, занялись излучением газовых облаков, находящихся на расстоянии 12 млрд. световых лет от Земли. Излучение это, по всей вероятности, исходит из материи, вырванной из недр молодых галактик мощным тяготением черных дыр. А сама материя состоит, в основном, из заряженных частиц — ионов и электронов. Так вот — наблюдения дали факты, объяснить которые исследователи смогли, лишь прибегнув к такому парадоксальному предположению: со временем меняются силы притяжения между электрически заряженными частицами.
Почему так решили? Дело в том, что излучение молодых галактик, проходя по пути к нам сквозь разреженные межгалактические облака, меняет свой спектр. При этом каждое вещество, входящее в состав облака, выступает в роли своеобразного фильтра, поглощая свет строго определенной длины волны. Потому, кстати, ученые могут безошибочно сказать: в таком-то облаке есть атомы алюминия, в таком-то цинка.
А это могло значить лишь одно: изменились свойства самих атомов. В частности, величины зарядов частиц, из которых они состоят. А эти параметры, в свою очередь, неразрывно связаны с диэлектрической проницаемостью, которая фигурирует в законе Кулона. Более того, ученые предположили, что «поплыла» и гравитационная постоянная всемирного закона тяготения знаменитого закона Ньютона. А это, в свою очередь, означает, что и сила тяжести, и сила электростатического притяжения, и иные силы, на которых держится наш мир, увы, уже нельзя назвать константами.
То есть, говоря иначе, могут измениться и размеры атомов, и размеры Вселенной. И сами мы, того не подозревая, можем стать великанами или уменьшиться до размера муравья. Да и процессы, происходящие в организме, могут стать совершенно иными. Человек-луч или некое «облако в штанах» — как вам это нравится?..
Впрочем, до этого пока далеко: величина отклонений, обнаруженная исследователями, составляет всего лишь одну стотысячную от той или иной константы, и накопилась она лишь за 12 млрд. лет, но важен сам принцип. Как это: константы — и вдруг величины переменные?! Это же может привести к перевороту в современной физике! Скажем, та же теория относительности Эйнштейна, например, зиждется на допущении, что скорость света всегда постоянна…