Однако не стоит думать, что все дело лишь в несовместимости восточных технологий с западными. Главная причина — технический прогресс как таковой. Стремительная смена поколений компьютеров и версий программ усложняет или даже делает невозможным использование совсем, казалось бы, свежих баз данных. Потому что свежайшая разработка буквально через несколько лет может быть воспринята компьютерщиками как отголосок далекого каменного века.
Когда несколько лет тому назад Джером Ланье, изобретатель термина «виртуальная реальность», захотел выставить в музее компьютерную игру 80-х годов XX века «Лунная пыль», у него ничего не вышло. Он не смог найти ни компьютера «Коммандор-64», ни подходящего джойстика, что же тогда говорить о таких носителях информации, как перфокарты, если сегодня уже редкостью стал дисковод для гибких дискет диаметром в 5 с четвертью дюйма, имевших широкое распространение еще лет 8 — 10 тому назад.
Столь же серьезная проблема — физическое старение носителей информации. Та же клинопись сохранилась тысячелетия потому, что таблички оказались обожжены до твердости камня. Пергаменты и бумага средневековья, выделанные без применения кислот, способны сохранять тексты в течение нескольких сотен лет. А вот те же магнитные ленты, которыми пользовались повсеместно еще 10 лет назад, уже непригодны к дальнейшей эксплуатации. И если даже хранить магнитные носители в идеальных условиях, это не гарантирует им долговечность. Ведь при считывании информации лента трется о головку, а значит, имеет место ее механический износ. Намагниченность ее постепенно снижается, и в какой-то момент начинаются сбои.
То же самое относится и к нынешним дискетам диаметром в 3,5 дюйма. При каждом использовании головка дисковода соприкасается с активным слоем. Быстрее всего изнашивается тот участок дискеты, на котором размещено оглавление. В общем, как показывает практика, содержимое таких дискет надо копировать не реже чем каждые 5 лет.
Жесткие диски более долговечны. По расчетам производителей, их ресурс — порядка 30 лет. Однако есть ли гарантия, что спустя хотя бы четверть века вы найдете такой компьютер или просто дисковод, способный перекопировать информацию, записанную на диске? Кроме того, 250 тыс. часов гарантии такого диска — всего лишь теоретический показатель. На практике никто его не проверял.
В общем, сегодня самыми надежными и долговечными считаются оптические носители информации — СД-ромы и ДВД. Сначала реклама утверждала, что они вообще вечны. Однако ныне предполагаемый срок уже снизили до 100 лет. Но это опять-таки лишь теоретический показатель, и никто толком не знает, как поведут себя диски спустя веет два десятилетия.
В общем получается, что нынешним носителям далеко по долговечности до шумерских клинописных табличек.
Электронная информация весьма уязвима. Над знаниями, накопленными человечеством за последние десятилетия, нависла угроза забвения. Немалое количество информации уже безвозвратно утрачено.
Однако говорить об этом никто не хочет всерьез — уж больно щекотливая тема. Ведь получается, что нынешний триумф цифровых технологий — своеобразный полет бабочки-однодневки. Как на это посмотрят магнаты современной микроэлектроники?
Между тем, уже достоверно известно, что в США утрачены данные переписи населения, проведенной всего лишь в 1960 году. Та же печальная участь постигла базу данных, где помещалась программа НАСА по исследованию Сатурна в 70-е годы.
Тем не менее перевод информации с бумажных носителей на диски продолжается во всех ведущих библиотеках мира. А что, если в один не очень хороший день выяснится, что цифровые каталоги «полетели», а бумажные опрометчиво сданы в утиль?
Угроза эта вполне реальна. И потому ученые задумались о создании способа хранения информации, поневоле заставляющего вспомнить изобретение шумеров.
Возвращение к клинописи?
Принципу письма шумеров — выдавливанию знаков твердым предметом на мягком материале — похоже, суждено пережить ренессанс в информатике, полагает немецкий физик Герд Бинг, лауреат Нобелевской премии, руководитель исследовательского центра ИБМ в Цюрихе. Инженеры ныне намерены записывать, считывать и стирать информацию на современных носителях так же, как это делали в древности — механически.
Детище Бенига и его коллег носит название «миллипед», что в переводе с латинского означает «тысяча ног». В этом механическом носителе, как и в магнитном, главную роль играет тончайшая игла растрового микроскопа — модернизированная версия того, за который Бениг был удостоен Нобелевской премии в 1986 году.
Идея, положенная в основу миллипеда, достаточно проста. При записи нагретая игла выдавливает в полимерной пленке мельчайшие углубления диаметром всего несколько атомов. При считывании та же игла, попадая в углубления, немного охлаждается, и эта потеря тепла позволяет судить о наличии выемки, что принимается за «1».
— В миллипеде одновременно используются тысячи таких игл, так что весь процесс условно можно назвать наноклинописью, — говорит Герд Бениг. — Я думаю, что это действительно маленькая революция в информатике. Однако она прежде всего происходит в нашем сознании. Ведь мы привыкли считать микроэлектронику технологией будущего. Однако на самом деле будущее за механикой вместе с электроникой. И конечно, миллипед — лишь первый шаг в этом направлении…