Выполнив программу полета и произведя необходимые маневры для выхода на траекторию снижения, аппарат вместе с макетом полезной нагрузки пошел на посадку. Она тоже была не совсем обычной. Российские инженеры из НПО имени Лавочкина и специалисты германского концерна «Даймлер-Крайслер азроспейс» впервые испытали в реальных условиях уникальную технологию защиты космических кораблей от сгорания в плотных слоях земной атмосферы.
В тот момент, когда корабль входит в плотные слои атмосферы и начинает разогреваться, его обволакивает надувной кокон из специальной термостойкой пленки. «Кокон» этот выполняет сразу две функции. Во-первых, прикрывает непосредственно сам корпус корабля, не позволяя ему перегреваться. Во-вторых, служит аэродинамическим тормозом, замедляя движение аппарата в атмосфере.
Винт вместо парашюта
И парашюты, и крылья, в том числе надувные, нужны для того, чтобы погасить при посадке скорость космолета. А для этого есть и другие способы.
В марте 1999 года американская компания «Ротари Рокет», которую возглавляет известный специалист по аэрокосмической технике Гарри Хадсон, продемонстрировала опытный образец оригинального 135-тонного двухместного космического корабля многоразового использования.
В отличие от традиционных «Шаттлов» новый корабль, получивший название «Ротон», не имеет узлов, отстреливаемых во время полета. Весьма оригинальна и двигательная установка аппарата. Ее основой служит 7-метровый вращающийся диск, по окружности которого размещено 96 ракетных двигателей, каждый из которых имеет камеру сгорания размером не больше… консервной банки.
Компоненты топлива — керосин и жидкий кислород — поступают в них под действием центробежной силы. Для этого перед взлетом диск с двигателями раскручивают от внешнего привода. Вращение диска в полете поддерживается благодаря тому, что каждое из сопел чуть отклонено в одну сторону. Возникающий гироскопический момент помогает кораблю устойчиво держаться на курсе.
Корпус нового аппарата почти целиком изготовлен из композитного материала на основе углеродных волокон и эпоксидных смол. Благодаря этому он получился очень легким и в то же время прочным.
После того, как экипаж выполнит полетное задание, он начинает готовиться к спуску. Для этого «Ротон» разворачивают задом наперед. Тяговые двигатели становятся теперь тормозными, и корабль постепенно начинает спускаться с орбиты по пологой спирали. Перед входом в плотные слои атмосферы экипаж раскрывает четыре складывающиеся 7-метровые вертолетные лопасти, расположенные на носу (который стал при спуске кормой). По мере того, как нарастает плотность окружающего воздуха, лопасти раскручиваются, тормозя падение аппарата. И он совершает плавный спуск в режиме авторотации (то есть лопасти вращаются свободно, без помощи двигателя).
Впрочем, в будущем Хадсон намерен увеличить длину каждой лопасти до 9,5 метра и установить на их концах небольшие реактивные двигатели. Экипаж аппарата получит возможность не только маневрировать при спуске, но взлетать по-вертолетному. И лишь на высоте около 5 километров астронавты запустят основные ракетные двигатели и поднимутся на орбиту.
В настоящее время опытный образец «Ротона» проходит всесторонние испытания. Прежде всего отрабатываются приемы мягкой посадки. С этой целью «Ротон» уже несколько раз спускался с самолета-носителя на вертолетных лопастях. Кроме того, в августе 1999 года на испытательном полигоне Мохаве, штат Калифорния, летчики включали основные двигатели, совершив 5-минутный полет на высоте около 3 метров.
К середине 2000 года компания «Ротари Рокет» планирует построить еще три «Ротона». Один из них послужит тренажером для подготовки экипажей, а два других готовят к полномасштабным полетам в космос.
Хадсон надеется, что каждый из таких аппаратов сможет совершить до 100 запусков на орбиту без капитального ремонта.
Приземление «Poтона» конструкторы видят таким..
Посадка на «подушку»
Слов нет, «Ротон» во многом близок к идеалу. По крайней мере, теоретически. На практике же многих инженеров беспокоит проблема прочности вертолетных лопастей, которым в довершение к традиционным перегрузкам придется испытать на себе еще и тепловой удар при погружении в плотные слои атмосферы. Будут ли они служить достаточно надежно?
Ведь и на обычных вертолетах ротор является наиболее уязвимым, ненадежным элементом всей конструкции…
Кроме того, не станем забывать, близок день, когда космический корабль с космонавтами на борту отправится в полет к другим небесным телам. На Луне атмосферы практически нет, на Марсе она весьма разрежена… Так что ротор годится далеко не всюду.
Наиболее универсальным средством как старта, так и приземления на сегодняшний день остаются реактивные двигатели… Они включаются перед самым приземлением и сводят скорость движения к нулю.
Ну а в дополнение к ним хорошо бы еще добавить некое посадочное устройство типа телескопических ног или, скажем, подушки. Не удивляйтесь, идея подушки тоже заимствована у парашютистов. Некоторые асы в старые добрые времена брали с собой в полет небольшие кожаные подушечки. При спуске они подсовывали их под ремень, чтобы было удобнее сидеть на подвеске. А перед самым приземлением бросали себе под ноги, смягчая толчок приземления.