Вопрос.Может быть, осуществить полет к звездам позволит атомный ракетный двигатель?
Ответ. Атомная ракета сможет развить скорость уже в несколько десятков километров в секунду, но вряд ли в несколько сотен километров в секунду. Почему?
Я полагаю, что использовать продукты деления атомных ядер в обычной атомной ракете будет невозможно. Ведь толчок, или, как говорят, количество движения, которое получает ракета, зависит не только от скорости выбрасывания газов из ее сопла, но и от количества, от массы этих газов. Это можно сравнить с ударом молотка: сила удара зависит не только от скорости, с какой падает молоток, но и от веса молотка.
Увеличить массу выбрасываемого вещества можно, если нагревать в ядерном реакторе какой-либо газ или металл. Потом этот нагретый газ или пары металла расширятся в сопле и с огромной скоростью вылетят из ракеты. Ракета получит сильный толчок.
Однако и здесь нас подстерегает опасность: для создания очень большой скорости выброса газов надо нагреть их слишком сильно, чего не выдержат части ракеты. При температурах, которые выдержат и стенки и сопло ракеты очевидно, можно добиться скорости выброса газов 8-10, может быть 15 км в секунду. А это уже позволит слетать и на внешние планеты Солнечной системы.
Сравнительно недавно, во времена Циолковского, Обберта, Годдорта, полет на Луну казался большинству людей фантазией. Теперь мы видим, что недалеко время свершения этой смелой фантазии. Однако к звездам, даже на атомной ракете мыслимой сегодня конструкции не улетишь!
Вопрос.Мы слыхали, профессор, что для полета к звездам ученые предполагают использовать фотонную ракету. Что это за ракета?
Ответ. Вы видите сами, что ни обычная, ни атомная ракета не способны унести человека к далеким мирам. Их скорости слишком малы. Даже летя со скоростью 100 км/сек, мы долетим до ближайшей к солнечной системе звезды Альфа из созвездия Центавра только за 10 тыс лет. Долговато!
Свет же от этой звезды идет до Земли всего около 4 лет. Вот если бы мы смогли лететь со скоростью, близкой к скорости света! какие возможности открылись бы тогда для исследования! Но какой двигатель сможет мчать ракету с такой скоростью?
Идея такого двигателя уже есть. Ее подал немецкий ученый Зенгер, предположивший воспользоваться… светом для достижения скоростей, близких к его скорости! Как же будет использован свет в качестве рабочего вещества?
Из школьной физики всякий знает, что свет — это один из видов электромагнитных волн. Только волны, применяемые в радиотехнике, имеют длину от нескольких километров до нескольких миллиметров, а длина световых волн измеряется миллимикронами.
Но ведь свет вместе с тем — это поток мельчайших частиц материи — фотонов, испускаемый веществом при различных реакциях. Значит, свет — одна из форм движущейся материи. А раз свет материален, то он производит давление на тела. Величина этого давления слишком мала, чтобы мы смогли его заметить в обычных условиях. Мельчайшая пылинка, севшая на оконное стекло, давит на него сильней, чем солнечный луч.
И все же существование этого ничтожного в обычных условиях давления удалось доказать и измерить знаменитому русскому физику П. Н. Лебедеву. Его тончайшие, «ювелирные» опыты в 1899 и 1909 годах блестяще подтвердили гениальную догадку Кеплера. Еще в 1619 году Кеплер пытался объяснить отклонение хвостов комет давлением солнечных лучей.
Теперь представим себе сверхмощную лампу, снабженную рефлектором. Лучи света падают на рефлектор и отражаются от него. При этом они давят на рефлектор. Такая лампа с рефлектором, подвешенная свободно в пространстве, и будет моделью фотонной ракеты.
В одну сторону будет выбрасываться узкий пучок света, отраженный от рефлектора, а в другую сторону вместе с лампой начнет двигаться рефлектор, на который давит свет. Источники света, которые имеются сейчас в нашем распоряжении, слишком слабы, и мы не замечаем давления света, а в будущем мы сумеем, безусловно, создать такие мощнейшие источники света, которые помчат огромные космические корабли.
Мощный луч света давит на крылышко крутильных весов и поворачивает их, закручивая нить.
Вопрос. А чем же будет создаваться такой сильный световой поток?
Ответ. В 1905 году ученый мир был потрясен появлением небольшой книжечки, автором которой был швейцарский инженер Альберт Эйнштейн. В этой работе были изложены первые основы теории относительности, одним из выводов которой является эквивалентность массы и энергии.
Энергия (Е), как гласит математическая формула, выведенная Эйнштейном, равна массе (m), умноженной на квадрат скорости света (с):
E = mc>2
При выделении из вещества энергии общая масса вещества уменьшается. Это уменьшение, называемое дефектом массы, особенно заметно при ядерных реакциях, которые, как известно, сопровождаются выделением огромных количеств энергии. Так, в ходе реакций распада ядер урана дефект маccы составляет всего 0,05 %, то-есть при выделении энергии масса уменьшается всего на 1/2000 долю.
Несколько больше дефект массы при термоядерных реакциях. Например, при слиянии ядер водорода в ядра гелия. Но и в этом случае он составляет всего 0,09 %.