Ядерные реакторы - [59]

Шрифт
Интервал


Магнитный мешок. Для того чтобы нагреть водород до миллиона градусов, нужна небольшая энергия. Для одного грамма дейтерия это всего несколько киловатт-часов. Трудность заключается в том, что при таких температурах атомы и молекулы газов обладают огромными скоростями и разбегаются в разные стороны. Давление газа достигает миллионов атмосфер. Тепло переходит от дейтерия к окружающему веществу, к стенкам сосуда, в котором происходит это нагревание. Естественно, что в этом случае мы уже будем затрачивать огромную энергию на нагревание сосуда. Нагреть нам дейтерий так не удастся. Да и какой сосуд выдержит температуру в миллионы градусов и давление в миллионы атмосфер? Надо было придумать такую термоизоляцию, которая дала бы возможность стенкам сосуда оставаться холодными в то время, когда газ в сосуде имеет температуру в миллионы градусов. Кроме того, нужно, чтобы давление на стенки сосуда не было бы слишком высоким. Казалось бы, что эта задача неразрешима. Но решение было найдено.

Нагретый до миллионов градусов газ уже не является обычным веществом. Он состоит из движущихся отдельно друг от друга заряженных частиц: положительных атомных ядер и отрицательных электронов. Этот газ называется плазмой. Задача заключается в том, чтобы удержать заряженные частицы вместе, так как при их разлете, естественно, будет уходить энергия, заключенная в объеме газа.

В 1950 году академики И. Е. Тамм и А. Д. Сахаров сделали очень интересное предложение о применении магнитного поля для термоизоляции плазмы высокой температуры. Дело в том, что в магнитном поле заряженные частицы не могут двигаться прямолинейно, а заворачиваются по окружностям. Чем больше магнитное поле, тем по меньшей окружности двигаются ионы и электроны. Правда, при столкновении друг с другом они будут перемещаться, но уйдут не дальше, чем на длину радиуса окружности. При сильном магнитном поле потеря энергии плазмой за счет движения частиц должна уменьшаться в десятки и сотни тысяч раз. Заряженные частицы нагретой до миллионов градусов плазмы будут как бы находиться в магнитном мешке. Однако стенки этого мешка, образованные магнитным полем, уже не боятся сверхвысоких температур.

После того как академики И. Е. Тамм и А. Д. Сахаров высказали свою идею, физики вспомнили, что с подобным явлением, правда в меньшем масштабе, с так называемым пинч-эффектом, они уже встречались при исследовании газового разряда. Читатель ведь знает, что, когда по проводнику протекает электрический ток, вокруг него образуется магнитное поле. То же самое происходит при прохождении тока через плазму. И вот при больших токах в ртутной дуге и при некоторых других формах электрического разряда возникающая там плазма благодаря сильному магнитному полю сжимается в узкий шнур. При этом сжатии, так же как это имеет место при обычном сжатии газа, происходит повышение температуры. Однако при сравнительно малых токах, которые до сих пор использовались в газовом разряде, температура плазменного шнура достигала только десятка тысяч градусов. Это далеко до температуры, необходимой для термоядерных реакций. Но это не обескуражило ученых. Были произведены необходимые расчеты, и большая группа физиков под руководством академика Л. А. Арцимовича приступила к исследованиям.


Близко к великой цели. Оказалось, что для успеха дела — получения температуры в миллион градусов — нужны токи порядка сотен тысяч и даже миллиона ампер. Такой ток можно пропустить через плазму разрядной трубы только при напряжении в несколько десятков тысяч вольт. Достаточно перемножить значение тока и напряжения, чтобы убедиться, что мощность установки превосходит мощность всех гидроэлектростанций Советского Союза. Выход заключался в том, чтобы пропускать через разрядную трубку мощные токи в виде импульсов, длящихся миллионные доли секунды. Тогда при колоссальной мгновенной мощности средняя мощность, потребная для питания установки, получается вполне приемлемой величины.

Газоразрядная трубка с дейтерием в экспериментальной установке получала электрическое питание от мощной батареи высоковольтных конденсаторов при напряжении 50 тысяч вольт.

Много нового и чрезвычайно интересного открыли советские физики при исследовании сверхмощных импульсных разрядов. Применяя специальные и очень остроумные измерительные приборы, они обнаружили, что газ в трубке стягивается в узкий плазменный шнур, оторванный от стенок сосуда. Плазма испытывает резкие колебания, связанные с последовательным сжатием и разряжением. В сосуде возникают ударные волны с невиданной скоростью распространения — несколько сот километров в секунду. Температура плазменного шнура в момент наибольшего сжатия достигала миллиона градусов.

Интересно отметить, что в ряде исследований применялась сверхскоростная киносъемка. Киноаппарат фотографировал около двух миллионов кадров в секунду. После проявления кинопленки перед глазами физиков раскрывались все особенности процессов, длившихся миллионные доли секунды. Группа физиков и теоретиков обработала экспериментальный результат. Многие до сих пор неизвестные явления получили объяснения.


Рекомендуем почитать
Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Здоровая пища — поиски идеала. Есть ли золотая середина в запутанном мире диет?

Наше здоровье зависит от того, что мы едим. Но как не ошибиться в выборе питания, если число предлагаемых «правильных» диет, как утверждают знающие люди, приближается к 30 тысячам? Люди шарахаются от одной диеты к другой, от вегетарианства к мясоедению, от монодиет к раздельному питанию. Каждый диетолог уверяет, что именно его система питания самая действенная: одни исходят из собственного взгляда на потребности нашего организма, другие опираются на религиозные традиции, третьи обращаются к древним источникам, четвертые видят панацею в восточной медицине… Виктор Конышев пытается разобраться во всем этом разнообразии и — не принимая сторону какой-либо диеты — дает читателю множество полезных советов, а попутно рассказывает, какова судьба съеденных нами генов, какую роль сыграло в эволюции голодание, для чего необходимо ощущать вкус пищи, что и как ели наши далекие предки и еще о многом другом…Виктор Конышев — доктор медицинских наук, диетолог, автор ряда книг о питании.Книга изготовлена в соответствии с Федеральным законом от 29 декабря 2010 г.


Ньютон. Закон всемирного тяготения. Самая притягательная сила природы

Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.


Легенда о Вавилоне

Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.


Открытия и гипотезы, 2005 №11

Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.


Знание-сила, 2000 № 07 (877)

Ежемесячный научно-популярный и научно-художественный журнал.


Термоядерное оружие

Книга рассчитана на широкий круг читателей, интересующихся термоядерными процессами, термоядерным оружием, принципами его устройства и действия. В книге воины Советской Армии и Военно- Морского Флота познакомятся с наиболее мощным современным видом ядерного оружия — термоядерным оружием, а также с защитой от его поражающего действия. При ознакомлении с книгами серии следует учитывать, что международная система единиц СИ была принята только в 1960 году, а в СССР введена 1 января 1963 года, «в качестве предпочтительной»; теория «ядерной зимы» зародилась в 1983–1985 гг.


Физические основы получения атомной энергии

В настоящей книжке изложены основные вопросы ядерной физики, знание которых необходимо для понимания особенностей ядерной энергии и тех физических принципов, которые используются или предполагаются использоваться в ближайшем будущем для ее производства. Книжка рассчитана на широкий круг военных читателей со средним образованием, стремящихся познакомиться с новой областью науки, имеющей большое практическое значение.


Дмитрий Иванович Менделеев

В книге видного советского философа и историка науки Б. Г. Кузнецова рассказывается о жизни и деятельности великого русского ученого Дмитрия Ивановича Менделеева. Автор показывает сложный образ революционера в науке, величайшего химика, выдающегося технолога, патриота своей страны. Популярно излагается суть открытий и достижений ученого, их значение для развития современной науки, производства и военного дела.


О неслышимых звуках

Открытые в начале XX века ультразвуки нашли широкое применение в самых разнообразных областях науки и техники. Они помогают обнаруживать подводные лодки и различные препятствия на дне морей и рек, используются для промера глубин, для контроля качества металлических конструкций и деталей, для очистки воздуха, в медицине и фармацевтической промышленности и т. д. О том, что такое ультразвуковые волны, о способах их получения, свойствах и применении и рассказывает книга специалиста в области ультразвуков профессора доктора химических наук Бориса Борисовича Кудрявцева «О неслышимых звуках».