Ядерные реакторы - [43]

Шрифт
Интервал

Если в графитовом реакторе заменить воду натрием, то при давлении теплоносителя 5–10 атмосфер можно значительно поднять температуру в первичном контуре и получить коэффициент полезного действия атомной электростанции, превышающий 30 процентов.

Натрий сравнительно слабо поглощает нейтроны, и поэтому в больших реакторах такого типа можно обойтись ураном с малым обогащением (около одного процента). Если же применять урановые элементы, покрытые цирконием или слоем очень тонкой стали, то можно работать и на природном уране. Графито-натриевые реакторы в ближайшее время будут применяться в энергетических установках. Недостатком натриевого охлаждения является довольно высокая радиоактивность натрия. Вследствие этого первичный контур, выполненный с расплавленным натрием, трудно обслуживать.

В атомных электростанциях вполне возможно также применение гомогенных и гетерогенных реакторов, где в качестве замедлителя используется тяжелая или простая вода.

Общий недостаток всех описанных выше реакторов заключается в том, что вырабатываемая в них энергия получается в основном за счет урана>235. В будущей атомной энергетике, по всей вероятности, главную роль будут играть размножающие реакторы, в которых атомная энергия выделяется из природного урана и тория. В этом направлении и работают советские ученые. Так, академик А. И. Алиханов с сотрудниками разработали схему гомогенного размножающего реактора с кипящей водой, о которой было рассказано в предыдущем разделе.

Значение развития ядерной энергетики огромно. Дело не только в стоимости электроэнергии. Перевод тепловых электростанций на ядерное топливо даст возможность передать огромные количества угля и нефти химической промышленности. При их химической переработке получается много весьма ценных и необходимых нам материалов. Запасы угля и нефти на земле не так уж велики, и, вероятно, через 30–40 лет будет считаться варварством сжигать химическое сырье в топке паровых котлов. Вся потребность человечества в электрической энергии будет обеспечена гидроэлектрическими и ядерными станциями.

Имеется у ядерных электростанций и ряд других преимуществ.

В приведенной на рис. 64 сравнительной диаграмме видна работа тепловой и атомной электростанций. Слева размещено сырье, необходимое для выработки электроэнергии, справа — продукция электростанций.


>Рис. 64. Сравнительная диаграмма работы атомной и тепловой электростанций

Тепловая электростанция требует для своей работы большое количество топлива, воды и воздуха. При ее эксплуатации получаются газообразные отходы в виде дыма, содержащего большое количество золы и несгоревшего угля. Этот дым загрязняет атмосферу городов и поселков.

Для работы атомной электростанции не нужен воздух. Она потребляет ничтожные количества ядерного топлива — урана или тория. По весу они в два с половиной миллиона раз меньше, чем соответствующие по запасу энергии количества угля. Атомная электростанция не дает дыма. Получающееся некоторое количество радиоактивных «осколков» может быть использовано для изготовления радиоактивных препаратов. Ядерный реактор электростанции излучает большое количество нейтронов и радиоактивных излучений, которые в основном поглощаются бетонной защитой. Но часть нейтронов может быть использована для облучения различных элементов с целью получения радиоактивных изотопов, которые используются в народном хозяйстве.


Атомный двигатель. Атомная энергия может быть использована не только для получения электричества.

Сейчас вполне возможна установка атомного двигателя на больших морских судах (рис. 65). Теплоноситель, выходящий из ядерного реактора, нагревает воду паровых котлов. Пар может быть использован обычным способом: либо для работы паровых машин, связанных с гребным валом, либо (что энергетически значительно выгоднее) для вращения паровой турбины. Паровая турбина имеет очень большое число оборотов, поэтому ее нельзя связывать прямо с гребным валом. Между турбиной и гребным валом устанавливается редуктор — прибор, позволяющий получать уменьшенное число оборотов вала.


>Рис. 65. Схема использования атомного двигателя на морском судне

Расчеты показывают, что для кругосветного плавания морского судна водоизмещением 15–20 тысяч тонн необходимо всего 800–900 граммов урана>235.

Такое судно практически не связано с топливной базой. Оно может плавать месяцы и даже годы без пополнения запасов горючего. Отработанное, нуждающееся в химической обработке ядерное горючее может складываться в больших свинцовых ящиках. После нескольких месяцев хранения большая часть радиоактивных веществ в основном распадется, и восстановление ядерного горючего можно будет произвести на находящемся на берегу предприятии.

Уже сейчас при недостаточно совершенной еще ядерной технике эксплуатация атомных двигателей на больших судах обойдется не дороже, чем эксплуатация тепловых машин, использующих химическое топливо.

Атомный двигатель не требует для своей работы воздуха и поэтому может быть вполне успешно использован на подводной лодке (рис. 66).


>Рис. 66. Схема атомной подводной лодки

Такая лодка является уже в полном смысле подводной. Она может двигаться под водой неограниченное время. Ей не нужно, как это приходится делать современной лодке, время от времени подниматься на поверхность воды для зарядки аккумуляторов. Атомная подводная лодка может действовать под водой длительное время. Необходимый для дыхания команды кислород может запасаться в конденсированном виде в баллонах или извлекаться при помощи электролиза прямо из морской воды. Сейчас подводные лодки используются в основном для военных целей. Атомные подводные лодки могут быть использованы и для пассажирских и грузовых перевозок. В любую погоду, и зимой, и летом, они смогут плавать от Мурманска до Владивостока вдоль нашего северного и восточного побережья. Им не страшны мощные ледяные поля, преграждающие путь надводным кораблям: они пройдут подо льдами.


Рекомендуем почитать
Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Здоровая пища — поиски идеала. Есть ли золотая середина в запутанном мире диет?

Наше здоровье зависит от того, что мы едим. Но как не ошибиться в выборе питания, если число предлагаемых «правильных» диет, как утверждают знающие люди, приближается к 30 тысячам? Люди шарахаются от одной диеты к другой, от вегетарианства к мясоедению, от монодиет к раздельному питанию. Каждый диетолог уверяет, что именно его система питания самая действенная: одни исходят из собственного взгляда на потребности нашего организма, другие опираются на религиозные традиции, третьи обращаются к древним источникам, четвертые видят панацею в восточной медицине… Виктор Конышев пытается разобраться во всем этом разнообразии и — не принимая сторону какой-либо диеты — дает читателю множество полезных советов, а попутно рассказывает, какова судьба съеденных нами генов, какую роль сыграло в эволюции голодание, для чего необходимо ощущать вкус пищи, что и как ели наши далекие предки и еще о многом другом…Виктор Конышев — доктор медицинских наук, диетолог, автор ряда книг о питании.Книга изготовлена в соответствии с Федеральным законом от 29 декабря 2010 г.


Ньютон. Закон всемирного тяготения. Самая притягательная сила природы

Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.


Легенда о Вавилоне

Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.


Открытия и гипотезы, 2005 №11

Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.


Знание-сила, 2000 № 07 (877)

Ежемесячный научно-популярный и научно-художественный журнал.


Термоядерное оружие

Книга рассчитана на широкий круг читателей, интересующихся термоядерными процессами, термоядерным оружием, принципами его устройства и действия. В книге воины Советской Армии и Военно- Морского Флота познакомятся с наиболее мощным современным видом ядерного оружия — термоядерным оружием, а также с защитой от его поражающего действия. При ознакомлении с книгами серии следует учитывать, что международная система единиц СИ была принята только в 1960 году, а в СССР введена 1 января 1963 года, «в качестве предпочтительной»; теория «ядерной зимы» зародилась в 1983–1985 гг.


Физические основы получения атомной энергии

В настоящей книжке изложены основные вопросы ядерной физики, знание которых необходимо для понимания особенностей ядерной энергии и тех физических принципов, которые используются или предполагаются использоваться в ближайшем будущем для ее производства. Книжка рассчитана на широкий круг военных читателей со средним образованием, стремящихся познакомиться с новой областью науки, имеющей большое практическое значение.


Дмитрий Иванович Менделеев

В книге видного советского философа и историка науки Б. Г. Кузнецова рассказывается о жизни и деятельности великого русского ученого Дмитрия Ивановича Менделеева. Автор показывает сложный образ революционера в науке, величайшего химика, выдающегося технолога, патриота своей страны. Популярно излагается суть открытий и достижений ученого, их значение для развития современной науки, производства и военного дела.


О неслышимых звуках

Открытые в начале XX века ультразвуки нашли широкое применение в самых разнообразных областях науки и техники. Они помогают обнаруживать подводные лодки и различные препятствия на дне морей и рек, используются для промера глубин, для контроля качества металлических конструкций и деталей, для очистки воздуха, в медицине и фармацевтической промышленности и т. д. О том, что такое ультразвуковые волны, о способах их получения, свойствах и применении и рассказывает книга специалиста в области ультразвуков профессора доктора химических наук Бориса Борисовича Кудрявцева «О неслышимых звуках».