Ядерные реакторы - [17]

Шрифт
Интервал

Кроме того, могут быть нейтроны космического происхождения. Из далеких миров, из Галактики к нам приходят космические частицы, представляющие собой ядра легких элементов, обладающие колоссальной энергией. Эти частицы, сталкиваясь с ядрами различных веществ, производят ядерные реакции, в которых иногда образуются нейтроны. Эти нейтроны тоже могут быть начальными при развитии цепного процесса. Не исключено также деление ядер урана непосредственно теми же космическими частицами.

Итак, в большом куске урана всегда найдется несколько блуждающих нейтронов, которых вполне достаточно для начала цепного процесса. Как только вес куска урана превысит критический, в нем мгновенно произойдет атомный взрыв.


«Горение» урана. Мы уже знаем, как получают атомную энергию из урана>235. Но этого недостаточно. Надо научиться управлять процессом выделения энергии. Ведь эта энергия получается в форме взрыва. Цепной процесс идет очень быстро до тех пор, пока не распадется весь расщепляющийся материал или пока этот материал не разлетится под действием атомного взрыва.

Следовательно, нужно научиться осуществлять медленное «горение» урана.

Казалось бы, управлять цепным процессом не так трудно.

Предположим, что мы сумеем изменять и поглощение нейтронов и выход их через поверхность урана, то есть изменять величину коэффициентов р и f.

Для начала цепного процесса мы должны увеличить р или f до тех значений, при которых коэффициент размножения K становится больше единицы. Число нейтронов, а следовательно, и число реакций деления, будет непрерывно возрастать. После того как количество выделяющейся энергии станет достаточно велико и мощность установки возрастет до необходимых значений, коэффициент размножения можно уменьшить до единицы. При этом число нейтронов, а следовательно, и мощность установки останется на прежнем уровне. Изменять же коэффициент размножения можно, и позже мы покажем, как это делается.

Но скорость нейтронов слишком велика, чтобы можно было достаточно надежно управлять процессом. Мы уже видели, что при коэффициенте размножения, равном двум, цепной процесс длится миллионные доли секунды. Поэтому, казалось бы, как только значение коэффициента превзойдет единицу, управление процессом станет невозможным: слишком быстро будет нарастать число нейтронов, участвующих в делении урана. Даже если нам и удастся держать значение коэффициента размножения близким к единице, не может быть гарантии, что при внезапном изменении режима процесс может либо совсем затухнуть, либо перейти в атомный взрыв.

К счастью, есть одно обстоятельство, которое облегчает управление цепным процессом в уране. Исследования показали, что при делении ядра урана не все нейтроны выделяются одновременно. Часть нейтронов (около одного процента) выбрасывается «осколками» деления с довольно большим запозданием, достигающим 60–80 секунд. Эти так называемые запаздывающие нейтроны позволяют в некоторых случаях сильно замедлять развитие цепного процесса.

Предположим, что мы довели значение коэффициента размножения до единицы. Это значит, что потеря нейтронов полностью восполняется вновь образованными при делении ядер. В этом случае цепной процесс осуществляется за счет запаздывающих нейтронов, так как без них коэффициент размножения был бы равен приблизительно 0,99.

Если мы теперь увеличим коэффициент размножения до 1,01, то это увеличение произойдет не сразу. Та часть его, которая определяется мгновенно вылетающими нейтронами, быстро поднимется до единицы. Запаздывающие же нейтроны увеличат значение коэффициента размножения только через одну — полторы минуты. И только после этого будет развиваться цепной процесс.

Таким образом, изменяя коэффициент размножения вблизи значения единицы, мы можем постепенно ускорять или замедлять развитие цепного процесса, то есть управлять скоростью выделения атомной энергии, получающейся при делении урана.


Простейший ядерный реактор. Аппарат, в котором осуществляется управляемый цепной процесс деления, называется ядерным реактором.

Принцип действия ядерного реактора очень прост (рис. 15). Можно взять, например, кусок урана в виде полого короткого цилиндра с таким расчетом, чтобы его вес был близок к критическому. В этом случае коэффициент размножения будет близок к единице. Если постепенно вдвигать в полость цилиндра урановый стержень, то вследствие уменьшения утечки нейтронов через полость коэффициент размножения будет расти и при определенном положении стержня он может стать несколько больше единицы. Нужно только помнить, что коэффициент размножения не должен превышать 1,01, так как при больших его значениях ядерный процесс будет определяться мгновенно вылетающими нейтронами, реактор может выйти из управления и произойдет атомный взрыв. При коэффициенте размножения больше единицы начнет развиваться цепная реакция и возрастать количество выделяющейся энергии. При достижении нужной мощности, изменяя положение уранового стержня, можно добиться такого состояния, при котором коэффициент размножения будет равен единице. Тогда в ядерном реакторе будет выделяться постоянная во времени атомная энергия. Урановый цилиндр будет нагреваться, и выделяющееся в такой атомной «печи» тепло может быть использовано для различных целей.


Рекомендуем почитать
Знание-сила, 2003 № 10 (916)

Ежемесячный научно-популярный и научно-художественный журнал.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Здоровая пища — поиски идеала. Есть ли золотая середина в запутанном мире диет?

Наше здоровье зависит от того, что мы едим. Но как не ошибиться в выборе питания, если число предлагаемых «правильных» диет, как утверждают знающие люди, приближается к 30 тысячам? Люди шарахаются от одной диеты к другой, от вегетарианства к мясоедению, от монодиет к раздельному питанию. Каждый диетолог уверяет, что именно его система питания самая действенная: одни исходят из собственного взгляда на потребности нашего организма, другие опираются на религиозные традиции, третьи обращаются к древним источникам, четвертые видят панацею в восточной медицине… Виктор Конышев пытается разобраться во всем этом разнообразии и — не принимая сторону какой-либо диеты — дает читателю множество полезных советов, а попутно рассказывает, какова судьба съеденных нами генов, какую роль сыграло в эволюции голодание, для чего необходимо ощущать вкус пищи, что и как ели наши далекие предки и еще о многом другом…Виктор Конышев — доктор медицинских наук, диетолог, автор ряда книг о питании.Книга изготовлена в соответствии с Федеральным законом от 29 декабря 2010 г.


Ньютон. Закон всемирного тяготения. Самая притягательная сила природы

Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.


Легенда о Вавилоне

Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.


Открытия и гипотезы, 2005 №11

Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.


Термоядерное оружие

Книга рассчитана на широкий круг читателей, интересующихся термоядерными процессами, термоядерным оружием, принципами его устройства и действия. В книге воины Советской Армии и Военно- Морского Флота познакомятся с наиболее мощным современным видом ядерного оружия — термоядерным оружием, а также с защитой от его поражающего действия. При ознакомлении с книгами серии следует учитывать, что международная система единиц СИ была принята только в 1960 году, а в СССР введена 1 января 1963 года, «в качестве предпочтительной»; теория «ядерной зимы» зародилась в 1983–1985 гг.


Физические основы получения атомной энергии

В настоящей книжке изложены основные вопросы ядерной физики, знание которых необходимо для понимания особенностей ядерной энергии и тех физических принципов, которые используются или предполагаются использоваться в ближайшем будущем для ее производства. Книжка рассчитана на широкий круг военных читателей со средним образованием, стремящихся познакомиться с новой областью науки, имеющей большое практическое значение.


Дмитрий Иванович Менделеев

В книге видного советского философа и историка науки Б. Г. Кузнецова рассказывается о жизни и деятельности великого русского ученого Дмитрия Ивановича Менделеева. Автор показывает сложный образ революционера в науке, величайшего химика, выдающегося технолога, патриота своей страны. Популярно излагается суть открытий и достижений ученого, их значение для развития современной науки, производства и военного дела.


О неслышимых звуках

Открытые в начале XX века ультразвуки нашли широкое применение в самых разнообразных областях науки и техники. Они помогают обнаруживать подводные лодки и различные препятствия на дне морей и рек, используются для промера глубин, для контроля качества металлических конструкций и деталей, для очистки воздуха, в медицине и фармацевтической промышленности и т. д. О том, что такое ультразвуковые волны, о способах их получения, свойствах и применении и рассказывает книга специалиста в области ультразвуков профессора доктора химических наук Бориса Борисовича Кудрявцева «О неслышимых звуках».