Ядерные излучения и жизнь - [79]
Что касается электронов внутреннего и внешнего радиационных поясов, то преодолеть оболочку космического корабля они не в состоянии. Зато при их ударе об оболочку и торможении возникает так называемое тормозное гамма-излучение, обладающее высокой проникающей способностью. Вклад этого тормозного излучения в суммарную дозу радиации при прохождении радиационных поясов не превышает, по-видимому, 10%.
В целом можно утверждать, что опасность, создаваемая радиационными поясами Земли, не является непреодолимой и может быть сведена к минимуму с помощью сравнительно несложных мероприятий. Наиболее эффективное из них состоит в том, что космический корабль будет быстро проходить опасную зону; возможны и траектории космических полетов, направленные в обход поясов, через высокоширотные, приполярные области. Конструкция оболочки корабля может быть построена с учетом требований радиационной безопасности, что в то же время не противоречит и общим задачам. По-видимому, наиболее эффективна слоистая защита, включающая металлическую оболочку и слой полиэтилена.
Одним словом, современная наука и техника располагают достаточными средствами для преодоления опасности, создаваемой радиационными поясами Земли. Тем не менее их существование необходимо учитывать при создании более или менее длительно существующих обитаемых космических станций. Сейчас уже ясно, что создавать их на высоте 1000 км над поверхностью Земли, как предполагал К. Э. Циолковский, нельзя. Очевидно, их придется располагать на высотах до 500 км или выше 10 - 15 тыс. км.
Гораздо более серьезную проблему составляет существование первичного космического излучения. Оболочка корабля, как уже сказано, не является препятствием для наиболее жесткой части этого излучения - тяжелых частиц. При определенных условиях она даже способствует увеличению биологической эффективности этих лучей (несколько замедляя частицы и увеличивая удельную плотность производимой ими ионизации). На этом основании приходится сделать вывод, что физическая защита от действия первичного космического излучения неэффективна.
Но нужна ли эта защита? Быть может, интенсивность космических лучей столь невелика, что их действием можно пренебречь? Как теперь установлено, это, к сожалению, не так. Доза радиации, которую космонавты будут получать за счет космического излучения за пределами атмосферы, примерно в два-три раза выше допустимой дозы облучения в земных условиях, при работе с источниками излучения и радиоактивными изотопами. Но благодаря высокой биологической эффективности наиболее тяжелой части космических лучей их воздействие на организм космонавта будет еще несколько сильнее. И все же превышение допустимой дозы радиации в случае первичных космических лучей галактического происхождения не настолько велико, чтобы ограничить возможность космических полетов на Луну, а также к Венере и Марсу. Согласно расчетам ученых, при полетах вокруг Луны и обратно космонавты получают суммарную дозу около 0,5 р, т. е., примерно столько же, сколько при производстве простейшего рентгеновского исследования - рентгеноскопии. Лишь при более длительных полетах, продолжающихся многие месяцы и годы, постоянное воздействие космической радиации может оказать более или менее серьезное воздействие. Очевидно, для таких полетов следует продумать и эффективные меры защиты, в том числе и химической, поскольку физическая, как уже сказано, неэффективна.
Наибольшую опасность для здоровья и даже жизни космонавтов при полетах в околоземном пространстве представляет корпускулярное излучение солнечных хромосферных вспышек. При особенно мощных солнечных вспышках потоки протонов бывают настолько плотными, что доза радиации за пределами атмосферы и в условиях отсутствия защиты достигает тысяч рентгенов в час, т. е. превышает абсолютно смертельную для человека дозу. Правда, оболочка корабля поглощает значительную часть быстрых частиц и ослабляет энергию других, но взамен возникает тормозное рентгеновское и гамма-излучение, так что доза радиации внутри корабля все же может оказаться очень высокой. Кроме того, многое зависит и от масштабов вспышки. При особо мощных вспышках возникают наиболее высокоэнергичные частицы, способные преодолевать оболочку корабля, что, естественно, увеличивает их опасность для космонавтов.
Каковы же меры борьбы с лучевой опасностью в космосе? Преодолима ли она? Не ограничивает ли она дальность полетов в космосе и время пребывания в нем людей?
Меры борьбы различны, поскольку существуют различные виды радиационной опасности. Что касается радиационных поясов Земли, то их преодоление не составляет очень больших трудностей. Оболочка космического корабля существенно ослабляет их потенциальную опасность. Время пребывания космического корабля в пределах наиболее опасного внутреннего радиационного пояса весьма ограничено, и доза радиации, получаемая при его прохождении, мало отличается от допустимой. Но ее можно избежать, если рассчитать трассу полета таким образом, чтобы корабль покидал плотные слои атмосферы в высоких широтах, в районе расположенного над геомагнитным полюсом окна в радиационных поясах Земли. Стационарные же космические станции, очевидно, следует располагать вне пределов радиационных поясов, т. е. ниже 400 - 500 км или выше 10 - 20 тыс. км над земной поверхностью.
В книге рассказывается о роли Солнца и солнечного света в возникновении и развитии жизни на Земле, в процессах фотосинтеза. Анализируются физическая природа и особенности действия на организм видимого света, ультрафиолетовых и инфракрасных лучей; рассматривается влияние физических процессов, протекающих в недрах Солнца, на ритм разнообразных процессов в биосфере. Особое внимание автор уделяет изучению воздействия солнечных лучей на организм человека.Утверждено к печати редколлегией серии научно-популярных изданий Академии наук СССР.
«280 дней до вашего рождения. Репортаж о том, что вы забыли, находясь в эпицентре событий» рассказывает ИСТОРИЮ О ВАС от зачатия до рождения, от первой клетки до девяти месяцев спустя, когда вы решили появиться на этот свет. Знаете ли вы, что в начале XX века выражение «КРОЛИК УМЕР» означало, что женщина беременна? Или то, что крошечный морской червь bonellia viridis проводит всю свою жизнь в своей же самке, являясь ее личным донором спермы? Это всего лишь два из очень необычных фактов, которые вы найдете в книге Катарины Вестре, рассказывающей нам все о чудесном процессе развития человека в утробе матери.
Наше поколение стало свидетелем необычайной победы человеческого разума — начала проникновения в космос. Перед молодежью открываются увлекательные, полные заманчивости перспективы межпланетных путешествий и открытий. Но есть еще и на нашей «обжитой» планете Земля много неизученных «белых пятен», среди них почти неизвестный на всю его глубину Мировой океан с его подводными горами и впадинами, со своим растительным и животным миром, со своими физическими законами. В изучении его большую пользу приносит гидроакустика — сравнительно молодая наука, имеющая большое будущее. Эта наука имеет большое прикладное значение.
Оказалось, достаточно всего одного поколения медиков, чтобы полностью изменить взгляд на генетические заболевания. Когда-то они воспринимались как удар судьбы, а сейчас во многих случаях с ними можно справиться. Некоторые из них почти исчезли, как, например, талассемия, отступившая на Кипре благодаря определенным политическим мерам, или болезнь Тея–Сакса, все менее распространенная у евреев-ашкеназов. Случаи заболевания муковисцидозом также сократились. Генетические заболевания похожи на родовое проклятие, то появляющееся, то исчезающее от поколения к поколению.
Книга Рюди Вестендорпа, профессора геронтологии Лейденского университета и директора Лейденской академии жизненной активности и старения, анализирует процесс старения и его причины в широком аспекте современных научных знаний. Чему мы можем научиться от людей, которые оставались здоровыми всю свою исключительно долгую жизнь? Помогут ли нам ограничения в пище или гормоны, витамины и минеральные вещества? Как сохранить свои жизненные силы, несмотря на лишения и болезни? Автор систематизирует факторы, влияющие на постоянно растущую продолжительность жизни людей нашего времени. В книге подробно обсуждаются социальные и политические последствия этого жизненного взрыва.
Если вы читали о динозаврах в детстве, смотрели «Мир юрского периода» и теперь думаете, что все о них знаете, – в этой книге вас ждет много сюрпризов. Начиная c описания мегалозавра в XIX в. и заканчивая открытиями 2017 г., ученые Даррен Нэйш и Пол Барретт рассказывают о том, что сегодня известно палеонтологам об этих животных, и о том, как компьютерное моделирование, томографы и другие новые технологии помогают ученым узнать еще больше. Перед вами развернется история длиной в 150 миллионов лет – от первых существ размером с кошку до тираннозавра и дальше к современным ястребам и колибри.