Ядерные излучения и жизнь - [15]

Шрифт
Интервал

Итак, достаточно было лучу повредить в нескольких местах внутриклеточные мембраны, как ферменты вышли из своих привычных, строго определенных отсеков и начали действовать на структуры самой клетки. Удивительная последовательность обменных реакций нарушилась, и началось беспорядочное, хаотическое разрушение деталей еще недавно идеально работавшего сложнейшего механизма. Ферменты, освобожденные радиацией из тесных рамок внутриклеточной структуры, начинают действовать особенно активно, изменяют и расщепляют вещества клеточной протоплазмы. В клетках накапливаются вещества, которые в нормальных условиях либо совсем не образуются, либо возникают в ничтожных количествах и существуют недолго. В облученной клетке концентрация таких необычных веществ - продуктов воздействия ядерных излучений - может оказаться настолько высокой, что жизнедеятельность клетки нарушится, и она погибнет. Название этих веществ - радиотоксины - удачно подчеркивает как их ядовитые свойства (токсин-яд), так и происхождение, связанное с воздействием радиации. Накопление радиотоксинов и повреждение хромосомного аппарата клетки - одна из важнейших причин интерфазной гибели клеток.

Клетки различных тканей и органов отличаются по своей структуре, по интенсивности и характеру обменных процессов. Одна и та же доза радиации вызывает в них различную дезорганизацию обмена, количество образующихся радиотоксинов и чувствительность к ним клеток тоже неодинаковы. Поэтому в одних клетках интерфазная гибель не происходит вовсе, в других наблюдается изредка, в третьих является главным результатом лучевого поражения. Чувствительность ткани или органа к радиации зависит, таким образом, и от интенсивности процесса клеточного деления (митотическая гибель), и от особенностей обмена веществ, определяющих степень выраженности интерфазной гибели клеток.

Накопление радиотоксинов не только приводит к гибели клеток, в которых они образовались под влиянием облучения, но и через кровь оказывает воздействие на отдаленные от облученной области органы. Вот к какому результату может привести один единственный луч, разрушивший в начале всего несколько десятков молекул.

Что же происходит при пролете ионизирующей частицы через живую систему?

Прямое и косвенное действие радиации

Мы уже знаем, что основной результат действия проникающей радиации на вещество - ионизация молекул и атомов этого вещества. Ионизирующая частица (или квант энергии рентгеновских и гамма-лучей), пролетая через пространство, заполненное атомами вещества, неизбежно сталкивается с некоторыми из них. Путь ионизирующей частицы отмечен появлением множества пар ионов. Отсюда и происходит название частиц и всего излучения - ионизирующее.

Для понимания закономерностей биологического действия радиации очень важно иметь в виду еще два обстоятельства. Во-первых, способность частицы ионизировать атомы и молекулы вещества не ограничивается ее траекторией. Если исходная энергия частицы достаточно велика, электроны, выбитые ею из атомов, приобретают настолько большую энергию и скорость, что в свою очередь вызывает вторичную ионизацию. Эти вторичные электроны отдачи увеличивают зону вредного действия ионизирующих частиц.

Во-вторых, действие ионизирующей радиации приводит к образованию не только ионов. Если частица почему-либо отдает встреченным атомам небольшую порцию энергии (это бывает в тех случаях, когда она, пролетая, только задевает электронную оболочку атома), то ее оказывается уже недостаточно для того, чтобы выбить электрон из пределов атома. Электрон лишь на короткое время (одну миллионную долю секунды) отдаляется от ядра (такой электрон называется возбужденным), а затем скачком возвращается на свое обычное место, отдавая избыточную энергию в виде кванта ультрафиолетового излучения, тепла или химической энергии взаимодействия.

Таким образом, в результате пролета ионизирующей частицы в веществе образуются ионы и возбужденные атомы, лежащие как вдоль траектории первичной частицы, так и в стороне от нее, по пути движения вторичных электронов отдачи. Но это чисто физическое представление может служить лишь отправным пунктом для понимания сложнейших изменений, порождаемых радиацией в живой ткани.

Живая клетка, как мы уже отмечали, представляет собой очень сложную систему. Какие же последствия будет иметь образование в живой клетке ионов и "возбужденных атомов? Прежде всего надо иметь в виду, что в сложной клеточной организации есть молекулы веществ разного строения и разной сложности. Основную массу живого тела (от 50 до 80%) составляет вода. Она является растворителем органических веществ, входящих в состав организма, фоном, на котором протекают все жизненные обменные процессы. В воде растворены или взвешены молекулы солей, простых Сахаров, жирных кислот, аминокислот, а также большие сложные полимерные молекулы белков, нуклеиновых кислот, полисахаридов.

Ионизирующие частицы, естественно, наталкиваются на атомы и молекулы вещества клетки без всякого разбора, так как движутся прямолинейно. Однако для живого вещества, для жизни и здоровья отдельной клетки и всего организма в целом вовсе не безразлично, какие именно молекулы встретились на пути смертоносной частицы. Если в результате облучения оказались разрушенными несколько десятков или даже сотен молекул воды, в общей массе клеточной жидкости эта ничтожная потеря не может играть серьезной роли. Но если пострадали молекулы нуклеиновых кислот и белков - наиболее важных структур клетки, тех самых веществ, которые обеспечивают протекание всех жизненных процессов в нужном порядке и последовательности, а также передачу признаков организма по наследству, такое повреждение уже не безразлично как для организма в целом, так и для отдельных его клеток.


Еще от автора Вилен Абрамович Барабой
Солнечный луч

В книге рассказывается о роли Солнца и солнечного света в возникновении и развитии жизни на Земле, в процессах фотосинтеза. Анализируются физическая природа и особенности действия на организм видимого света, ультрафиолетовых и инфракрасных лучей; рассматривается влияние физических процессов, протекающих в недрах Солнца, на ритм разнообразных процессов в биосфере. Особое внимание автор уделяет изучению воздействия солнечных лучей на организм человека.Утверждено к печати редколлегией серии научно-популярных изданий Академии наук СССР.


Рекомендуем почитать
Здоровая пища — поиски идеала. Есть ли золотая середина в запутанном мире диет?

Наше здоровье зависит от того, что мы едим. Но как не ошибиться в выборе питания, если число предлагаемых «правильных» диет, как утверждают знающие люди, приближается к 30 тысячам? Люди шарахаются от одной диеты к другой, от вегетарианства к мясоедению, от монодиет к раздельному питанию. Каждый диетолог уверяет, что именно его система питания самая действенная: одни исходят из собственного взгляда на потребности нашего организма, другие опираются на религиозные традиции, третьи обращаются к древним источникам, четвертые видят панацею в восточной медицине… Виктор Конышев пытается разобраться во всем этом разнообразии и — не принимая сторону какой-либо диеты — дает читателю множество полезных советов, а попутно рассказывает, какова судьба съеденных нами генов, какую роль сыграло в эволюции голодание, для чего необходимо ощущать вкус пищи, что и как ели наши далекие предки и еще о многом другом…Виктор Конышев — доктор медицинских наук, диетолог, автор ряда книг о питании.Книга изготовлена в соответствии с Федеральным законом от 29 декабря 2010 г.


Ньютон. Закон всемирного тяготения. Самая притягательная сила природы

Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.


Легенда о Вавилоне

Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.


Открытия и гипотезы, 2005 №11

Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.


Знание-сила, 2000 № 07 (877)

Ежемесячный научно-популярный и научно-художественный журнал.


Популярно о микробиологии

В занимательной и доступной форме автор вводит читателя в удивительный мир микробиологии. Вы узнаете об истории открытия микроорганизмов и их жизнедеятельности. О том, что известно современной науке о морфологии, методах обнаружения, культивирования и хранения микробов, об их роли в поддержании жизни на нашей планете. О перспективах разработок новых технологий, применение которых может сыграть важную роль в решении многих глобальных проблем, стоящих перед человечеством.Книга предназначена широкому кругу читателей, всем, кто интересуется вопросами современной микробиологии и биотехнологии.