Взрыв и взрывчатые вещества - [7]
Для тротила она равна 7 километрам в секунду. Взрыв в тротиле распространяется в 20 с лишним раз быстрее, чем звук в воздухе, и в 8 раз быстрее, чем летит винтовочная пуля; при такой скорости путь от Москвы до Ленинграда был бы пройден за полторы минуты.
Чем больше скорость распространения взрыва, тем сильнее и резче удар, производимый газами взрыва, тем больше дробящее действие взрыва.
Это действие можно еще более усилить, направляя его на определенный, небольшой участок разрушаемого объекта, например брони, которую нужно пробить. Такое сосредоточение действия взрыва основано на явлении так называемой кумуляции (от латинского слова «кумуляцио» — увеличение), впервые наблюдавшемся известным русским военным инженером М. М. Боресковым еще в 1864 году, но широко использованном только во время второй мировой войны.
Явление кумуляции можно пояснить таким опытом (рис. 1). На стальную плиту поставлены два цилиндрических заряда взрывчатого вещества одинаковых размеров, но один сплошной, а другой с конической выемкой в нижней части. Если эти заряды взорвать, то сплошной заряд даст на плите вмятину на большой площади, но малой глубины, а заряд с выемкой, меньший по весу, пробьет плиту насквозь, хотя и на малой площади. Такое сосредоточение действия взрыва объясняется тем, что газы взрыва, движущиеся от поверхности конуса, встречаются на оси его и образуют мощную тонкую струю, пробивающую стальную плиту.
Рис. 1. Схема действия кумулятивного заряда.
Пробивное действие получается еще сильнее, если коническая выемка имеет металлическую облицовку небольшой толщины. Тогда кумулятивная струя включает в себя тяжелый металл, движущийся с огромной скоростью, и врезается в сталь, как нож в масло.
В минувшей войне задача борьбы с броней (танки, бронетранспортеры, доты и др.) получила важнейшее значение. Для этой цели был использован кумулятивный принцип устройства заряда бронебойных боеприпасов, в первую очередь противотанковых снарядов. Схема устройства такого снаряда показана на рис. 2. При ударе снаряда о броню взрывается чувствительный головной взрыватель; его взрыв передается по центральной трубке капсюлю-детонатору, находящемуся в донной части снаряда; капсюль-детонатор через промежуточный детонатор вызывает взрыв разрывного заряда, имеющего кумулятивную выемку с металлической облицовкой.
Рис. 2. Схема устройства кумулятивного снаряда.
Пробивное действие кумулятивного снаряда основывается не на большой его скорости, то есть не на большой энергии удара, как у обычных бронебойных снарядов, а на действии взрыва заряда взрывчатого вещества, снабженного кумулятивной выемкой и взрывающегося в момент удара снаряда о броню.
2. Три класса взрывчатых веществ
История открытия взрывчатых веществ — героические страницы в летописи химии. Часто химик, получая новое соединение, не подозревал о том, что оно способно взрываться, и дорого — потерей пальцев, глаз, а иногда и жизни — оплачивал свое открытие.
Некоторые взрывчатые вещества, открытые химиками, настолько чувствительны, что взрываются от малейшего прикосновения.
Примером такого вещества может служить йодистый азот — порошок черного цвета, образующийся при взаимодействии йода с раствором аммиака. Во влажном виде этот порошок не взрывается, но если дать ему высохнуть, то он становится таким чувствительным, что взрывается от самого слабого воздействия, например от прикосновения бородки птичьего пера. Йодистый азот взрывается даже от сильного света, например от вспышки магниевого состава, применяемого при фотографировании.
Понятно, что такие сверхчувствительные взрывчатые вещества не могут иметь практического значения, так как опасность взрыва при обращении с ними чрезмерно велика. И если бы химия знала только взрывчатые соединения типа йодистого азота, то взрывчатые вещества не получили бы того применения, какое они имеют в наше время.
Следует указать, что нет прямой связи между количеством энергии, которую нужно затратить для возбуждения взрыва взрывчатого вещества, и количеством энергии, которую оно дает при взрыве. Это относится не только к взрывчатым веществам. Зажечь дрова, например, легче, чем каменный уголь, хотя при горении угля тепла выделяется вдвое больше.
Представим себе камень, лежащий на возвышении. Если столкнуть его с этого возвышения, то он будет падать, приобретая все большую и большую скорость. Очевидно, что усилие, которое нужно, чтобы вызвать падение камня, не зависит от того, на какой высоте он находится. Скорость же и кинетическая энергия, которые приобретает падающий камень, тем больше, чем больше высота падения.
Учеными были открыты взрывчатые вещества, превосходящие йодистый азот по силе действия и в то же время обладающие несравненно меньшей чувствительностью. Возбудить взрыв таких взрывчатых веществ теплом и ударом настолько трудно, что некоторые из них долгое время после их открытия даже не считались взрывчатыми. Так, пикриновая кислота, которая была открыта в 1788 году, в течение почти ста лет использовалась только как желтая краска. И лишь в 1873 году было установлено, что эта краска является сильнейшим взрывчатым веществом; вскоре после этого ее начали применять для снаряжения артиллерийских снарядов.
Роль взрывчатых веществ в горном деле и других отраслях промышленности и народного хозяйства в целом так велика, что трудно представить себе, как без них был бы достигнут современный уровень материальной культуры. Что же такое взрывчатые вещества, на чём основано их действие при взрыве, из чего они изготовляются и как применяются — об этом и рассказывается в книге Константина Константиновича Андреева (1905–1964).
"Стрелок из противотанкового ружья, тебе вручено советским народом могущественное средство для уничтожения фашистских танков — противотанковое ружье. Чтобы выполнить с честью эту задачу, надо отлично знать свое оружие, ловко и сноровисто действовать им, умело использовать местность, знать сильные и слабые места противника, точно выполнять поставленную тебе командиром задачу, согласованно действовать с товарищами.".
Япония отличается особым отношением к традиционным ценностям своей культуры. Понимание механизмов актуализации и развития традиций, которыми пользуется Япония, может открыть новые способы сохранения устойчивости культуры, что становится в настоящее время все более актуальной проблемой для многих стран мира. В качестве центральных категорий, составляющих основу пространственного восприятия архитектуры в Японии, выделяется триада: пустота, промежуток, тень. Эти категории можно считать инвариантами культуры этой страны, т. к.
В книге рассмотрены возможности организации бизнеса в сфере коммерческого учета электроэнергии на современном этапе рыночных преобразований в отечественной энергетике. Проведен анализ законодательной базы и практики регулирования рыночных отношений в сфере коммерческого учета. Исследован предмет бизнеса операторов коммерческого учета (ОКУ) с точки зрения его эффективности и востребованности рыночным сообществом.Приведены доступные автору материалы, связанные с деятельностью ОКУ в зарубежных странах, прежде всего в Великобритании.
В занимательной форме рассказано об исследованиях и разработках важнейших систем современных роботов. Показано, как можно самим выполнить ту или иную систему робота из простейших электронных схем. Приведены практические схемы отечественных и зарубежных любительских конструкций роботов. По сравнению с первым изданием (1980 г) материал значительно обновлён Для широкого круга читателей.
В 40–50-х годах прошлого века в СССР публиковалось несколько научно-популярных серий. Самая известная — серия «Научно-популярная библиотека». Параллельно с этой серией выпускалась серия «Научно-популярная библиотека солдата и матроса», издававшаяся военным, а не гражданским, издательством.Перед вами — одна из книг этой серии: «День и ночь. Времена года».В ней в очень простой и увлекательной форме даны основы окружающего нас мира — к которым мы настолько привыкли, что даже забываем задать себе очевидные, но не такие уж и простые для ответа вопросы…В этой небольшой книжке мы постараемся ответить на два вопроса — почему день сменяется ночью, а ночь днём и почему изменяются времена года.
Издание посвящено выдающемуся российскому электротехнику, изобретателю и предпринимателю Павлу Николаевичу Яблочкову (1847–1894).
История развития русской науки и техники богата многочисленными именами выдающихся изобретателей и конструкторов. С особенной гордостью мы вспоминаем славные имена — первого изобретателя паровой машины Ползунова, конструктора металлообрабатывающего станка Нартова, создателей первых русских паровозов Черепановых, выдающегося конструктора и изобретателя многочисленных механизмов, устройств и сооружений Кулибина и других ученых, техников и изобретателей, своими изобретениями и конструкциями намного опережавших иностранных ученых и техников.