Введение в QNX/Neutrino 2. Руководство по программированию приложений реального времени в QNX Realtime Platform - [23]
Восемь потоков, четыре процессора.
На этом рисунке предполагается следующее:
• потоки 5, 6, 7 и 8 привязаны к процессорам 1, 2, 3, и 4 (для упрощения);
• передача данных выполняется с более высоким приоритетов чем вычислительные операции;
• прервать передачу нельзя.
Из диаграммы видно, что хоть мы теперь и имеем в два раза больше потоков, чем процессоров, мы по-прежнему сталкиваемся с временными интервалами, в течение которых процессоры «недоиспользованы». На рисунке показаны три таких интервала времени. Эти интервалы обозначены числами, соответствующими номеру процессора, и указаны на временных диаграммах загрузки процессоров в строках «Загрузка»:
1. Поток 1 ожидает подтверждения (состояние «W»), при этом поток 5 завершил вычисления и ждет доступности передатчика.
2. Потоки 2 и 6 ожидают подтверждения.
3. Поток 3 ожидает подтверждения, при этом поток 7 завершил вычисления и ждет доступности передатчика.
Этот пример для нас — важный урок. Бессмысленно просто увеличивать количество процессоров в надежде, что все ваши дела пойдут быстрее, поскольку имеются также и ограничивающие факторы. В некоторых случаях эти ограничивающие факторы определяются просто конструкцией материнской платы мультипроцессорной системы, то есть структурой подсистемы разрешения конфликтов за устройства в память, когда несколько процессоров пытаются обратиться по одному и тому же адресу. В нашем случае обратите внимание, что строка «Использование порта передачи данных» стала все больше заполняться. Если бы мы просто увеличили число процессоров, то в конечном счете столкнулись бы с проблемами, связанными с тем, что соответствующие потоки простаивали бы в ожидании передатчика.
В любом случае, используя потоки-«мусорщики» для сбора неиспользованных ресурсов процессоров, мы сможем обеспечить намного более эффективное использование процессоров. Это время приближенно оценивается по формуле:
(T>compute + T>tx + T>wait) ∙ num_x_lines / num_cpus
При выполнении только вычислений мы ограничены только количеством процессоров; ни один процессор не будет простаивать в ожидании подтверждения. Впрочем, это был бы идеальный случай. Как вы видели из диаграммы, реально периодически возникают временные интервалы, когда один процессор простаивает. Также, как отмечалось ранее, мы в любом случае ограничены по скорости значением:
T>compute + T>tx ∙ num_x_lines.
При том, что в общем случае вы можете запросто «игнорировать», работаете вы с SMP-архитектурой или с одиночным процессором, есть ряд обстоятельств, которые определенно добавят вам головной боли. К сожалению, это могут быть такие маловероятные события, которые могут проявиться не на этапе разработки, а на этапе его испытаний, в демонстрационных версиях или даже, что самое неприятное, на стадии эксплуатации. Так вот, следование ряду принципов «защитного программирования» избавит вас от связанной с этими проблемами нервотрепки.
Вот краткий перечень того, что следует четко помнить, имея дело с SMP-системой:
• Потоки действительно могут работать и работают параллельно — ни в коем случае не доверяйте при их синхронизации таким механизмам как диспетчеризация FIFO или система приоритетов.
• Потоки могут также выполняться одновременно с обработчиками прерываний (ISR) — это означает, что вам нужно будет не только защитить поток от обработчика прерываний, но и наоборот — обработчик прерываний от потока. Подробнее об этом см. в главе 4, «Прерывания».
• Некоторые операции, которые по вашему мнению должны быть атомарными, в действительности таковыми не являются — это зависит от операции и от процессора. Отметим из такого списка операции типа «чтение- модификация-запись» (например, >++
, >--
, >&=
, т.д.). См. файл >
для анализа возможных замен. (Заметьте, что это не проблема SMP в чистом виде; код для вышеупомянутых операции может выполняться не как атомарный на большинстве RISC-процессоров).
Ранее в разделе «Где хороша многопоточность» говорилось о том, что потокам также находят применение там, где имеет место обработка информации по множеству независимых алгоритмов с разделяемыми структурами данных. При этом, строго говоря, вы могли бы использовать несколько процессов (с одним потоком каждый), явно разделяющих данные, но в некоторых случаях вместо этого гораздо удобнее использовать один многопоточный процесс. Давайте рассмотрим, почему и где здесь можно использовать потоки.
В наших примерах будем отталкиваться от стандартной модели «ввод-обработка-вывод». В наиболее общем случае одна часть этой модели ответственна за получение откуда-либо входных данных, другая часть — за обработку этих данных и преобразование их в некоторые выходные данные (или управляющие воздействия), третья часть — за отправку полученных выходных данных куда надо.
Давайте, во-первых, осмыслим, что мы будем иметь в случае нескольких однопоточных процессов. Для нашей модели у нас было бы три процесса — процесс «ввода», процесс «обработки» и процесс «вывода»:
Одно из немногих изданий на русском языке, которое посвящено старейшей глобальной компьютерной сети "Fidonet". Сатирический справочник о жизни и смерти самого древнего сетевого сообщества, которое до сих пор существует среди нас.
В пособии излагаются основные тенденции развития организационного обеспечения безопасности информационных систем, а также подходы к анализу информационной инфраструктуры организационных систем и решению задач обеспечения безопасности компьютерных систем.Для студентов по направлению подготовки 230400 – Информационные системы и технологии (квалификация «бакалавр»).
В книге американских авторов — разработчиков операционной системы UNIX — блестяще решена проблема автоматизации деятельности программиста, системной поддержки его творчества, выходящей за рамки языков программирования. Профессионалам открыт богатый "встроенный" арсенал системы UNIX. Многочисленными примерами иллюстрировано использование языка управления заданиями shell.Для программистов-пользователей операционной системы UNIX.
Книга адресована программистам, работающим в самых разнообразных ОС UNIX. Авторы предлагают шире взглянуть на возможности параллельной организации вычислительного процесса в традиционном программировании. Особый акцент делается на потоках (threads), а именно на тех возможностях и сложностях, которые были привнесены в технику параллельных вычислений этой относительно новой парадигмой программирования. На примерах реальных кодов показываются приемы и преимущества параллельной организации вычислительного процесса.
Применение виртуальных машин дает различным категориям пользователей — от начинающих до IT-специалистов — множество преимуществ. Это и повышенная безопасность работы, и простота развертывания новых платформ, и снижение стоимости владения. И потому не случайно сегодня виртуальные машины переживают второе рождение.В книге рассмотрены три наиболее популярных на сегодняшний день инструмента, предназначенных для создания виртуальных машин и управления ими: Virtual PC 2004 компании Microsoft, VMware Workstation от компании VMware и относительно «свежий» продукт — Parallels Workstation, созданный в компании Parallels.
Книга содержит подробные сведения о таких недокументированных или малоизвестных возможностях Windows XP, как принципы работы с программами rundll32.exe и regsvr32.exe, написание скриптов сервера сценариев Windows и создание INF-файлов. В ней приведено описание оснасток, изложены принципы работы с консолью управления mmc.exe и параметрами реестра, которые изменяются с ее помощью. Кроме того, рассмотрено большое количество средств, позволяющих выполнить тонкую настройку Windows XP.Эта книга предназначена для опытных пользователей и администраторов, которым интересно узнать о нестандартных возможностях Windows.