Вселенная в электроне - [4]
В средние века, когда место науки заняла слепая вера в то, что ответы на все вопросы содержатся в святом писании, атомистику причисляли к изобретениям дьявола. Сторонников атомного учения преследовали еще в XVII веке. В 1624 году в Париже был издан специальный декрет, грозивший смертной казнью за устное или письменное распространение этого учения.
Права гражданства атому вернули лишь в начале прошлого века в связи с успехами быстро развивавшейся химии. Без этого нельзя уже было разобраться в разнообразии химических реакций. Главную роль в восстановлении прав атома сыграл английский химик Джон Дальтон. Он же воскресил и стал широко использовать в своих трудах забытое греческое слово «атом».
Атомная теория Дальтона не была простым повторением древнегреческой атомистики. В новой теории число различных типов атомов хотя и велико — много десятков (на сегодняшний день известно 109 различных атомов), но все же не бесконечно, как у Демокрита. Дальтон нашел много фактов, убедивших ученых в том, что атомы — это неделимые частицы ограниченного числа наипростейших веществ — химических элементов. Все остальные вещества состоят из тесно связанных больших и малых групп атомов — молекул. Они могут быть самыми различными — от одноатомных молекул металлов до страшно сложных, состоящих из десятков тысяч атомов белковых молекул. Это самая первая ступенька структурной лестницы, атомы — следующая.
Анатомия атома
В 1869 году внимание ученого мира было обращено к холодным и строгим шпилям Петербурга. Оттуда пришла сенсационная новость: 35-летний профессор Петербургского университета Д. И. Менделеев установил, что между атомами существует связь, которая проявляется в периодичности их свойств. Это было выдающимся открытием. И не только потому, что теперь можно было пересчитать все типы атомов, существующие в природе, в том числе и еще не открытые. Периодический закон Менделеева подсказывал, что в природе должно быть что-то еще более простое и первичное, чем атомы, то, что является причиной и порождает периодичность атомных свойств. Другими словами, должна быть следующая, заатомная ступенька. Неделимый атом должен делиться на части!
К такому выводу приводили и некоторые другие наблюдения. Так, было известно, что под действием высокого напряжения металлы испускают отрицательные электрические заряды. Московский физик А. Г. Столетов обнаружил, что такие заряды (их стали называть электронами) выбиваются из металлов лучами света. Все это наводило на мысль, что электроны входят в состав атомов. А отсюда сразу следовал другой вывод: в атоме есть положительно заряженная часть — ведь в целом-то вещество не имеет заряда, оно нейтрально.
Англичанин Дж. Томсон считал, что по своему строению атом похож на круглую булку с изюмом: положительно заряженное тесто с изюминками — электронами. За три года до конца XIX века Томсон измерил массу электрона. Оказалось, что он почти во столько же раз легче атома водорода, самого легкого из всех атомов, во сколько Земля легче Солнца. Возможно, именно эта аналогия навела француза Ж. Перрена на мысль о том, что атом устроен наподобие Солнечной системы — в центре тяжелое ядро с положительным электрическим зарядом, вокруг вращаются планеты — электроны. Статья Перрена, увидевшая свет в первый год нового, XX века, так и называлась: «Ядерно-планетарное строение атома».
Какая из этих двух моделей правильная — булка с отрицательно заряженным изюмом или микроскопическая солнечная система, — решили опыты Эрнста Резерфорда. Он первым потрогал, а лучше сказать — прощупал, атом с помощью альфа-частиц.
Альфа-частицы — это ядра атомов гелия. Они испускаются распадающимися атомами радия и, попадая на экран из светящегося материала, вызывают вспышки — маленькие искорки в тех местах, где частицы столкнулись с экраном. Точно так же экраны наших телевизоров светятся под действием пучка электронов. Так вот, пролетая сквозь атомы, альфа-частицы испытывают на себе действие их электрических полей, траектории частиц искривляются, и вместо одного светящегося пятнышка, которое оставил бы нерассеянный пучок альфа-частиц, на экране возникает россыпь искорок. При этом если экран установить в стороне, противоположной направлению движения первичного пучка, то на нем тоже иногда вспыхивают искорки — как будто некоторые альфа-частицы сталкиваются с чем-то очень тяжелым и отскакивают в обратном направлении, как горошины от стального бильярдного шарика. Роль такого шарика играет атомное ядро. Победила планетарная модель Перрена. «Это было похоже на то, — вспоминал впоследствии Резерфорд, — как если бы я увидел 16-дюймовый снаряд, отскочивший от листка газетной бумаги!» (В опытах Резерфорда в качестве атомной мишени использовалась тонкая фольга.)
Зная число слабо рассеянных и число отскочивших назад альфа-частиц, можно вычислить размеры атома. Результат получился ошеломляющим: если сравнивать с горошиной, то атом в сто миллиардов раз меньше, а его ядро еще в несколько десятков тысяч раз мельче. Можно сказать и по-другому: если бы атом вдруг вырос до размеров куриного яйца, его ядро сравнялось бы по величине с микробом. Ну а само куриное яйцо стало бы в несколько раз больше нашей соседки Луны! Это означает, что окружающие нас тела и мы сами состоим в основном из… пустоты.
В книге рассказывается об узловых проблемах современной физической картины мира: о черных и белых дырах во Вселенной, о «прелестных», «ароматных» и «цветных» частицах — кварках, о космических мирах, спрятанных внутри частиц, о пустоте, которая оказывается не пустотой, а материальной субстанцией, о квантах пространства и квантах времени, о гипотетических монополях и антивеществе. Для широкого круга читателей.
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.