Вселенная. Краткий путеводитель по пространству и времени: от Солнечной системы до самых далеких галактик и от Большого взрыва до будущего Вселенной [заметки]
1
Гектор и Патрокл находятся не в своих «лагерях», поскольку они были названы до того, как была принята эта традиция именования астероидов.
2
Заметим, что непосредственное измерение разницы в блеске Солнца и звезд – крайне непростая задача.
3
Быстро возрастает темп горения гелия, однако резкого всплеска светимости звезды при этом не происходит.
4
Урка-процессы – это процессы уноса энергии из ядра звезды с помощью нейтрино. Впервые этот механизм был предложен в 1940 г. Георгием (Джорджем) Гамовым и Марио Шёнбергом (Mario Schenberg). Происхождение названия Гамов объяснил в своей книге «Моя мировая линия: Неформальная биография» (М.: Наука, 1994): «Мы назвали его урка-процессом, отчасти чтобы отметить казино, в котором мы впервые встретились, и отчасти потому, что урка-процесс приводит к быстрой откачке тепловой энергии изнутри звезды, подобно быстрому исчезновению денег из карманов игроков в Казино да Урка».
5
Название теоремы взято из фразы Джона Уилера «У черной дыры нет волос», в которой «волосы» – это метафора любых наблюдаемых снаружи от горизонта черной дыры характеристик, кроме массы, момента импульса и электрического заряда. Сам Уилер в более поздних интервью отдает авторство этой метафоры Якову Бекенштейну (Jacob Bekenstein).
6
Многие эффекты, предсказанные ОТО, не связаны с какими-то особыми свойствами черных дыр, а проявляются в самых разных ситуациях. В случае черных дыр эти эффекты лишь могут достигать бóльших значений благодаря большой компактности этих объектов (отношение массы к радиусу), а поэтому в некоторых случаях их проще наблюдать именно там. Данный эффект не исключение, он существует в окрестности любого массивного вращающегося тела. В частности, он был экспериментально проверен и подтвержден на орбите Земли с помощью искусственных спутников LAGEOS, LAGEOS II (2004 г.) и Gravity Probe B (2011 г.).
7
Мазер – источник когерентного излучения в миллиметровом и сантиметровом диапазонах волн. В астрономии мазерные источники могут возникать в атмосферах звезд-гигантов и в молекулярных облаках в межзвездной среде. Излучение связано с переходами между молекулярными уровнями с инверсной заселенностью.
8
Заметим, что разные подсистемы рукавов в Галактике могут иметь разную угловую скорость. Поэтому можно говорить о нескольких зонах коротации. Соответственно, Солнце может находиться вблизи лишь одной из них.
9
Диски галактик, содержащие очень мало холодного газа, а следовательно, и молодых звезд, тоже иногда имеют спиральную структуру. Она связана с уплотнением старого звездного населения диска и всегда более размыта и слабо контрастна по причине отсутствия областей звездообразования.
10
Иными словами, образование локальных неоднородностей (например, связанных с локальными неустойчивостями диска), которые растягиваются в спиралевидные отрезки дифференциальным вращением.
11
Систематическая ошибка в определении расстояний не помешала верно определить общий характер зависимости скорости удаления галактики от расстояния до нее.
12
При условии однородности и изотропии Вселенной, что верно для больших масштабов, превышающих примерно миллиард световых лет.
13
Можно эквивалентно описать это и через увеличение расстояния между, скажем, фотонами, соответствующими началу и концу вспышки, по мере распространения сигнала в расширяющейся Вселенной. Это расстояние растет так же, как длина волны, т. е. как (1 + z).
14
Холодной ее называют потому, что еще на ранних стадиях расширения Вселенной частицы в этой модели стали двигаться относительно медленно – со скоростью, гораздо меньшей световой.
15
Отметим, что сверхновые Ia не являются «близнецами», поскольку в результате слияния белых карликов масса объекта может превзойти критическую на разную величину. Это приводит к отличиям в мощности вспышки и поведении кривой блеска.
16
Иногда эту величину называют светосилой, хотя формально это неправильно. Светосила равна квадрату относительного отверстия, т. е. (D/f)2.
17
В описании астрономических радионаблюдений вместо длин волн часто используют частоту. Эти величины связаны между собой простой формулой ν = с/λ, где ν – частота, λ – длина волны, а c – скорость света. Например, частота 300 МГц соответствует длине волны 1 м. А известная длина волны излучения нейтрального водорода 21 см соответствует частоте 1,4 ГГц.
18
Формально радиотелескоп РАТАН-600 Специальной астрофизической обсерватории Российской академии наук (станица Зеленчукская, Карачаево-Черкесия) имеет бóльший размер (его диаметр 576 м), однако он является кольцевым рефлектором (отражатель имеет форму узкого кольца).
19
Гравитационные волны от таких источников имеют очень большую длину (миллионы и даже сотни миллионов километров), поэтому наземные установки слишком малы для регистрации таких волн.
20
Это темные (с низким альбедо) астероиды красноватого оттенка, которые, возможно, состоят из богатых органическими соединениями силикатов с включениями водяного льда.
21
Заметим, что существуют новые расчеты, согласно которым стабилизирующее влияние Луны может быть существенно меньшим, чем полагали ранее.
22
Сфера Дайсона – гипотетическая астроинженерная конструкция, предложенная американским физиком-теоретиком Фрименом Дайсоном. Она представляет собой гигантскую сферическую оболочку (с радиусом порядка радиуса орбит планет) вокруг звезды для максимального использования энергии последней.
Книга посвящена нейтронным звездам – единственным астрономическим объектам, исследования которых отмечены уже двумя Нобелевскими премиями по физике, и еще две – на подходе. Это говорит о том, что именно они среди всего многообразия небесных тел представляют наибольший интерес для современной физики. Вы узнаете о том, как астрономы наблюдают нейтронные звезды, и какими удивительными объектами они могут быть, а кроме того, у вас будет возможность познакомится с необычными физическими явлениями, связанными с этими суперобъектами.
Галилео Галилею принадлежат слова: «Книга природы написана на языке математики». Спустя почти четыре столетия мы не устаем удивляться тому, что математические методы прекрасно подходят для описания нашего мира. Еще большее изумление вызывают естественнонаучные открытия, сделанные на основе математического анализа уравнений. Создание любой сложной конструкции – от хитроумной дорожной развязки до квантового компьютера – сопряжено с математическими расчетами. Для полноценного понимания действия гравитации или квантовых явлений нам также не обойтись без математики.
В этой книге спрятано 99 секретов астрономии. Откройте ее и узнайте о том, как устроена Вселенная, из чего состоит космическая пыль и откуда берутся черные дыры. Забавные и простые тексты расскажут о самых интересных астрономических явлениях и законах. Да здравствует наука БЕЗ занудства и непонятных терминов!
Освоение космоса давно шагнуло за рамки воображения:– каждый год космонавты отправляются за пределы Земли;– люди запускают спутники, часть которых уже сейчас преодолела Солнечную систему;– огромные телескопы наблюдают за звездами с орбиты нашей планеты.Кто был первым первопроходцем в небе? Какие невероятные теории стоят за нашими космическими достижениями? Что нас ждет в будущем? Эта книга кратко и понятно расскажет о самых важных открытиях в области астрономии, о людях, которые их сделали.Будьте в курсе научных открытий – всего за час!
Воспоминания американского астронавта Майкла Маллейна посвящены одной из наиболее ярких и драматичных страниц покорения космоса – программе многоразовых полетов Space Shuttle. Опередившая время и не использованная даже на четверть своих возможностей система оказалась и самым опасным среди всех пилотируемых средств в истории космонавтики. За 30 лет было совершено 135 полетов. Два корабля из пяти построенных погибли, унеся 14 жизней. Как такое могло случиться? Почему великие научно-технические достижения несли не только победы, но и поражения? Маллейн подробно описывает период подготовки и первое десятилетие эксплуатации шаттлов.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Книга «Большой космический клуб» рассчитана на широкий круг читателей и рассказывает об образовании, становлении и развитии неформальной группы стран и организаций, которые смогли запустить национальные спутники на собственных ракетах-носителях с национальных космодромов.