Всего шесть чисел. Главные силы, формирующие Вселенную - [38]
Обычно мы думаем о вакууме как о среде, где ничего нет. Но если даже убрать из некоего района межзвездного пространства те несколько частиц, которые в нем содержались, прикрыть его от излучения и охладить до температуры абсолютного нуля, оставшаяся пустота все еще будет хранить в себе какие-то остаточные силы и проявлять их. Это предполагал и сам Эйнштейн. Уже в 1917 г., вскоре после того, как он разработал свою ОТО, ученый начал размышлять о том, как эту теорию можно приложить ко Вселенной. В то время астрономы изучили только нашу собственную Галактику, и естественно было бы предположить, что Вселенная статична: не расширяется и не сжимается. Эйнштейн определил, что, если бы Вселенная появилась в статическом состоянии, она немедленно начала бы сжиматься, потому что все в ней притягивается. Вселенная не могла бы оставаться в статическом состоянии, если только не существовала бы дополнительная сила, противостоящая тяготению. Поэтому Эйнштейн добавил к своей теории новое число, которое назвал «космологической постоянной» и обозначил греческой буквой λ (лямбда). В те времена уравнения Эйнштейна допускали существование статической вселенной, где при соответствующем значении λ космическое отталкивание полностью уравновешивает тяготение. Эта вселенная была конечной, но неограниченной: любой посланный вами луч света рано или поздно вернется и попадет вам прямо в затылок.
После 1929 г. эта так называемая «эйнштейновская вселенная» стала не более чем любопытной выдумкой. К тому времени астрономы поняли, что наша Галактика – это всего лишь одна из многих, а далекие галактики от нас удаляются, т. е. Вселенная не статична, а расширяется. После этого открытия Эйнштейн утратил интерес к числу λ. В самом деле, в своей автобиографии «Моя мировая линия» Георгий Гамов[29] вспоминает разговор за три года до смерти Эйнштейна, где последний назвал число λ «самым большим промахом», поскольку, если бы он его не ввел, уравнения приводили бы к выводу о том, что наша Вселенная расширяется (или сжимается). Возможно, Эйнштейн предсказал бы расширение еще до того, как Эдвин Хаббл открыл его[30].
На 70 лет причины, по которым Эйнштейн ввел число λ, стали неактуальными. Но это не дискредитировало само понятие. Напротив, сейчас число λ кажется менее надуманным и узкоспециализированным, чем считал его Эйнштейн. Теперь мы понимаем, что пустое пространство может быть каким угодно, только не простым. В нем в латентном состоянии находятся все виды частиц. Любая частица вместе с парной античастицей может быть создана при правильной концентрации энергии. На еще более мелких масштабах пустое пространство может оказаться кипящей неразберихой струн, обнаруживающихся в дополнительных измерениях. С нашей современной точки зрения самая главная загадка состоит в том, почему число λ так мало. Почему бы всем сложным процессам, пусть даже они происходят в пустом пространстве, не иметь намного большего суммарного воздействия? Почему бы космосу не быть таким плотным, как атомные ядра или нейтронные звезды (в этом случае он замкнулся бы на себя в пределах 10–20 км)? Или даже, возможно, почему бы космосу не быть таким плотным, как Вселенная в первые 10>–35 секунд – в эпоху, значение которой для обобщающих теорий мы обсудим в следующих главах? На самом деле это значение меньше плотности ультраранней Вселенной в 10>120 раз – возможно, это было самое большое изменение порядка оцениваемой величины во всей науке в целом. Может быть, число λ точно и не равно нулю, но оно, конечно, очень мало и может конкурировать только с очень ослабленным тяготением межгалактического пространства.
Некоторые физики-теоретики предполагают, что пространство имеет сложную микроструктуру из крошечных черных дыр, которые способны компенсировать любую другую энергию в вакууме, что ведет к тому, что число λ точно равняется нулю. Однако эти доводы станут беспочвенны, если выяснится, что наша Вселенная действительно ускоряется и число λ не равно нулю, и заставят нас осторожнее относиться к высказываниям вроде: «Поскольку что-то является очень маленьким, обязательно должна быть веская причина того, почему оно точно равняется нулю».
ЕСЛИ ЧИСЛО λ НЕ РАВНО НУЛЮ
Во время написания этой книги (в 1999 г.) мнение о том, что число λ не равно нулю, было широко распространено, но при этом не преобладало. Наблюдения за сверхновыми вполне могли содержать неучтенные ошибки. Но другие доказательства, пусть даже формальные и непрямые, укрепляют позиции ускоряющейся Вселенной. Реликтовое излучение – «остаточное свечение» после Большого взрыва – распределено по небу не совершенно однородно: существует небольшая разница температур, вызванная неоднородностями, которые потом превратились в галактики и их скопления. Ожидаемый размер самых заметных участков этих неоднородностей может быть вычислен. То, насколько крупными они кажутся на небе – составляют ли в поперечнике один или два градуса, – зависит от того, сколько источников тяготения, влияющих на фокусировку, находится вдоль луча зрения. Измерения такого рода не удавалось осуществить до конца 1990-х гг. (наблюдения проводятся в сухой высокогорной местности, Антарктике или во время длительных полетов воздушных шаров), и они свидетельствуют против модели Вселенной низкой плотности. Если бы число Ω действительно равнялось 0,3, а число λ было бы точно равно 0, то зародыши скоплений галактик выглядели бы меньше, чем на самом деле. Тем не менее любая латентная энергия в вакууме вносит свой вклад в фокусировку. Если бы число λ составляло около 0,7, мы получили бы удобную согласованность этих результатов точно так же, как с помощью наблюдений сверхновых доказываем ускорение расширения.
Виктор Пронин пишет о героях, которые решают острые нравственные проблемы. В конфликтных ситуациях им приходится делать выбор между добром и злом, отстаивать свои убеждения или изменять им — тогда человек неизбежно теряет многое.
В этой книге океанограф, кандидат географических наук Г. Г. Кузьминская рассказывает о жизни самого теплого нашего моря. Вы познакомитесь с историей Черного моря, узнаете, как возникло оно, почему море соленое, прочтете о климате моря и влиянии его на прибрежные районы, о благотворном действии морской воды на организм человека, о том, за счет чего пополняются воды Черного моря и куда они уходят, о многообразии животного и растительного мира моря. Книга рассчитана на широкий круг читателей.
«Любая история, в том числе история развития жизни на Земле, – это замысловатое переплетение причин и следствий. Убери что-то одно, и все остальное изменится до неузнаваемости» – с этих слов и знаменитого примера с бабочкой из рассказа Рэя Брэдбери палеоэнтомолог Александр Храмов начинает свой удивительный рассказ о шестиногих хозяевах планеты. Мы отмахиваемся от мух и комаров, сражаемся с тараканами, обходим стороной муравейники, что уж говорить о вшах! Только не будь вшей, человек остался бы волосатым, как шимпанзе.
Настоящая монография посвящена изучению системы исторического образования и исторической науки в рамках сибирского научно-образовательного комплекса второй половины 1920-х – первой половины 1950-х гг. Период сталинизма в истории нашей страны характеризуется определенной дихотомией. С одной стороны, это время диктатуры коммунистической партии во всех сферах жизни советского общества, политических репрессий и идеологических кампаний. С другой стороны, именно в эти годы были заложены базовые институциональные основы развития исторического образования, исторической науки, принципов взаимоотношения исторического сообщества с государством, которые определили это развитие на десятилетия вперед, в том числе сохранившись во многих чертах и до сегодняшнего времени.
Эксперты пророчат, что следующие 50 лет будут определяться взаимоотношениями людей и технологий. Грядущие изобретения, несомненно, изменят нашу жизнь, вопрос состоит в том, до какой степени? Чего мы ждем от новых технологий и что хотим получить с их помощью? Как они изменят сферу медиа, экономику, здравоохранение, образование и нашу повседневную жизнь в целом? Ричард Уотсон призывает задуматься о современном обществе и представить, какой мир мы хотим создать в будущем. Он доступно и интересно исследует возможное влияние технологий на все сферы нашей жизни.
Что такое, в сущности, лес, откуда у людей с ним такая тесная связь? Для человека это не просто источник сырья или зеленый фитнес-центр – лес может стать местом духовных исканий, служить исцелению и просвещению. Биолог, эколог и журналист Адриане Лохнер рассматривает лес с культурно-исторической и с научной точек зрения. Вы узнаете, как устроена лесная экосистема, познакомитесь с различными типами леса, характеризующимися по составу видов деревьев и по условиям окружающей среды, а также с видами лесопользования и с некоторыми аспектами охраны лесов. «Когда видишь зеленые вершины холмов, которые волнами катятся до горизонта, вдруг охватывает оптимизм.