Все лгут. Поисковики, Big Data и Интернет знают о вас всё - [83]
Но это изменится.
На каждую идею, о которой я говорил в этой книге, приходятся сотни не менее важных, лишь ждущих решения. Исследования, обсуждаемые здесь – это верхушка айсберга, царапины на поверхности.
Так что же еще мы прогнозируем?
Например, радикальное расширение методологии, использованной в одном из самых успешных исследований общественного здравоохранения. В середине XIX века английский врач Джон Сноу заинтересовался причиной вспышки холеры в Лондоне.
Он выдвинул гениальную идею{189}: сопоставить все случаи этой болезни в городе. Сделав это, он обнаружил, что заболевания в значительной степени группируются вокруг одного конкретного водяного насоса. После чего предположил, что болезнь распространяется через заражение воды – опровергнув тем самым расхожую мысль о плохом воздухе.
Большие данные – и детализация, которую они обеспечивают – делают этот тип исследования очень простым. При любом заболевании мы можем проанализировать данные поисковых запросов в Google или других цифровых источниках о состоянии здоровья. Мы в состоянии найти на карте мира даже самые крошечные участки, где распространенность болезни является необычно высокой или необычно низкой. А затем оценить, что у них есть общего. Возможно, в воздухе? Или в воде? Или в социальных нормах?
Мы можем сделать это в отношении мигрени. Мы можем сделать это в отношении камней в почках. Мы можем сделать это в отношении беспокойства и депрессии, рака поджелудочной и болезни Альцгеймера, высокого кровяного давления и болей в пояснице, запоров и кровотечений из носа. Мы можем сделать это в отношении чего угодно. Анализ, некогда проведенный Сноу, мы могли бы провести 400 раз (некоторые исследования я начал уже во время написания этой книги).
Мы можем назвать это – применение простого метода и использование больших данных для проведения анализа несколько сот раз в течение короткого периода времени – наукой на высоком уровне. Да, социальные и поведенческие науки, безусловно, движутся к достижению таких позиций. Детализированные исследования в области медицины помогут этим наукам достичь требуемого масштаба. Этому также может поспособствовать использование А/B-тестирования. Мы обсуждали такой метод в контексте бизнеса – как добиться того, чтобы пользователи чаще кликали на рекламу. Сегодня эту эффективную методику используют повсеместно. Но А/В-тестирование можно применять для поиска ответов и на более фундаментальные – и социально значимые – вопросы, чем проблема кликов по рекламе.
Бенджамин Ф. Джонс{190} – экономист Северо-Западного университета, использующий А/В-тестирование для того, чтобы помочь детям лучше учиться. Он сумел создать платформу EDU STAR, которая позволяет школам случайным образом тестировать различные планы уроков.
Многие компании занимаются созданием образовательного программного обеспечения. Студенты входят в EDU STAR и случайным образом знакомятся с различными планами уроков. Затем они выполняют короткие тесты, призванные определить, насколько хорошо они разобрались с теми или иными заданиями. Иными словами, школы могут узнать, какое учебное программное обеспечение гарантирует лучшее усвоение материала.
EDU STAR, как и любая платформа на базе А/Б-тестирования, уже дает удивительные результаты. Один план урока, впечатливший представителей многих образовательных учреждений, позволял научить школьников работать с дробями. Считалось, что, если превратить математику в игру, ученики будут с бóльшим удовольствием узнавать новое и лучше выполнять тесты. Да? Неверно. Дети, изучавшие дроби посредством игры, проходили тесты хуже, чем те, кто знакомился с дробями стандартным способом.
Заинтересовать школьников в учебе – более захватывающее и социально полезное использование A/B-тестирования, чем его применение для того, чтобы заставить людей кликать на рекламу.
Средний американец спит каждую ночь 6,7 часа. Большинство из них хотят спать больше. Но вот наступает 11 вечера, и – спорт по телевизору или YouTube зовут. Так что сон подождет. «Jawbone», компания, производящая гаджеты и имеющая сотни тысяч клиентов, проводит тысячи тестов в поисках решения, которое помогло бы пользователям сделать то, чего они так хотят – пойти спать пораньше.
«Jawbone» добилась отличного результата с помощью двойной цели. Сначала специалисты компании просят клиентов реализовать не самую амбициозную цель. Они отправляют им такое сообщение: «Похоже, вы мало спите в последние 3 дня. Попробуйте лечь спать в 23:30! Мы знаем, что обычно вы встаете в 8 утра». Затем у пользователя появляется возможность кликнуть на кнопку «Согласен».
Затем, в 22:30, «Jawbone» отправляет еще одно сообщение: «Вы хотели пойти спать в 23:30. Сейчас 22:30. Почему бы не начать сейчас?»
В «Jawbone» обнаружили, что такая стратегия привела к дополнительным 23 минутам сна. Компания не заставляет клиентов ложиться спать в 22:30, но заманивает их в постель пораньше.
Конечно, каждая часть этой стратегии должна быть оптимизирована путем долгих экспериментов. Если озвучить первоначальную цель – просить пользователей пойти спать в 11 вечера – слишком рано, мало кто согласится. Попросите пользователей лечь спать в полночь, и вы не многого добьетесь.