Всё ещё неизвестная Вселенная. Мысли о физике, искусстве и кризисе науке - [44]
С другой стороны, проблемы, связанные с пониманием измерений в современной квантовой механике, могут сигнализировать о том, что теорию нужно менять. Квантовая механика настолько хорошо работает на уровне атомов, что любая новая теория должна быть практически неотличима от квантовой механики при рассмотрении столь мелких объектов. Однако новая теория может быть сконструирована таким образом, что суперпозиция состояний крупных объектов, таких как ученые-физики и их измерительные приборы, даже в условиях изоляции подвергается быстрому спонтанному коллапсу, при котором вероятности изменяются так, чтобы соответствовать результатам, получаемым в квантовой механике. Множественные миры Эверетта должны естественным образом свернуться к единому миру. Цель создания новой теории состоит в том, чтобы описать этот процесс как часть обычного физического процесса в рамках постквантовой теории, не придавая измерениям особый статус в физических законах.
Сложность создания такой новой теории связана с тем, что эксперимент не дает нам подсказок, в каком направлении двигаться, пока все данные согласуются с обычной квантовой механикой. Некоторые подсказки, однако, мы получаем из общих принципов, которые, как оказалось, задают удивительно строгие ограничения для любой новой теории.
Очевидно, вероятности должны быть заданы положительными числами, сумма которых равна 100 %. Еще одно требование, которое выполняется в обычной квантовой механике, состоит в том, чтобы в запутанных состояниях изменение вероятностей в процессе измерений не могло быть использовано для мгновенной передачи сигналов, поскольку иначе это будет нарушением теории относительности. СТО утверждает, что ни один сигнал не может быть передан со скоростью, превышающей скорость света. Если эти требования собрать вместе, оказывается, что самое общее изменение вероятностей удовлетворяет так называемому уравнению Линдблада[105]. Частным случаем уравнения Линдблада является уравнение Шрёдингера из обычной квантовой механики, однако в более общем случае в уравнение Линдблада входит ряд новых величин, которые описывают отступление от квантовой механики. Подробности об этих величинах нам, конечно, сейчас неизвестны. И хотя этого почти не заметили за пределами сообщества теоретиков, тем не менее уже вышла серия интересных статей, начиная с важной работы 1986 г. Джанкарло Гирарди, Альберто Римини и Туллио Вебера из Триесте, в которой для обобщения квантовой механики разными способами используется уравнение Линдблада.
В последнее время я раздумываю о возможностях экспериментального поиска признаков отклонения от обычных законов квантовой механики с помощью атомных часов. В основе любых атомных часов лежит изобретенное ныне покойным Норманом Рамзеем устройство, которое позволяет настраивать частоту микроволнового или оптического излучения на известное значение собственной частоты колебания атома, находящегося в суперпозиции двух состояний с разными уровнями энергии. Эта собственная частота равна отношению разности энергий двух состояний атома, используемого в атомных часах, к постоянной Планка. Собственная частота не зависит от внешних условий, поэтому ее можно использовать в качестве эталонной, подобно тому как цилиндр из платиново-иридиевого сплава, хранящийся в Севре[106], служит эталоном массы.
Подстройка частоты электромагнитной волны к этому эталонному значению немного похожа на подстройку частоты одного метронома к частоте другого. Если вы запустите два метронома вместе и их удары будут совпадать даже после тысячи повторений, вы сможете утверждать, что их частоты равны по крайней мере с точностью до одной тысячной. Квантово-механические расчеты показывают, что в атомных часах подстройка должна быть выполнена с точностью до 10–17, и такой точности действительно удается достичь. Но если бы поправки к квантово-механическим законам, которые описываются новыми членами уравнения Линдблада (представленные в энергетических единицах), были порядка 10–17 от разности энергий между состояниями атома в часах, то эта точность была бы потеряна[107]. Таким образом, величина новых членов должна быть намного меньше.
Насколько существенным является это ограничение? К сожалению, идеи о модификации квантовой механики представляют собой лишь смутные гипотезы, и мы пока не имеем ни малейшего представления, насколько велики могут оказаться поправки к квантово-механическим законам. Если принять во внимание не только эту проблему, но будущее квантовой механики в целом, то, на мой взгляд, здесь будет уместно процитировать Виолу из «Двенадцатой ночи»:
После публикации этой статьи Боб Сильверс предложил мне написать короткий ответ на множество комментариев, присланных в Review или непосредственно мне. Письмо, текст которого приводится ниже, было опубликовано в Review 6 апреля 2017 г.
Моя статья «Проблема квантовой механики» вызвала поток комментариев. Некоторые из них пришли от людей, не имеющих отношения к науке, которые были очарованы тем, что иногда физики могут не соглашаться друг с другом. Здесь есть место только для краткого обзора нескольких комментариев от физиков, предложивших аргументы в пользу тех интерпретаций квантовой механики, которые избавляют от необходимости модифицировать теорию. Увы, эти интерпретации отличаются друг от друга, но ни одна не кажется мне достаточно удовлетворительной.
В своей книге «Мечты об окончательной теории» Стивен Вайнберг – Нобелевский лауреат по физике – описывает поиск единой фундаментальной теории природы, которая для объяснения всего разнообразия явлений микро– и макромира не нуждалась бы в дополнительных принципах, не следующих из нее самой. Электромагнитные силы и радиоактивный распад, удержание кварков внутри нуклонов и разлет галактик – все это, как стремятся показать физики и математики, лишь разные проявления единого фундаментального закона.Вайнберг дает ответ на интригующие вопросы: Почему каждая попытка объяснить законы природы указывает на необходимость нового, более глубокого анализа? Почему самые лучшие теории не только логичны, но и красивы? Как повлияет окончательная теория на наше философское мировоззрение?Ясно и доступно Вайнберг излагает путь, который привел физиков от теории относительности и квантовой механики к теории суперструн и осознанию того, что наша Вселенная, быть может, сосуществует рядом с другими вселенными.Книга написана удивительно живым и образным языком, насыщена афоризмами и остроумными эпизодами.
В книге крупнейшего американского физика-теоретика популярно и увлекательно рассказывается о современном взгляде на происхождение Вселенной. Описаны факты, подтверждающие модель «горячей Вселенной», рассказана история фундаментальных астрофизических открытий последних лет. С большим мастерством и научной точностью излагается эволюция Вселенной на ранних стадиях ее развития после «Большого взрыва».В новое издание вошла также нобелевская лекция С. Вайнберга, в которой описывается история возникновения единой теории слабых и электромагнитных взаимодействий.Для читателей, интересующихся проблемами космологии.
Книга одного из самых известных ученых современности, нобелевского лауреата по физике, доктора философии Стивена Вайнберга – захватывающая и энциклопедически полная история науки. Это фундаментальный труд о том, как рождались и развивались современные научные знания, двигаясь от простого коллекционирования фактов к точным методам познания окружающего мира. Один из самых известных мыслителей сегодняшнего дня проведет нас по интереснейшему пути – от древних греков до нашей эры, через развитие науки в арабском и европейском мире в Средние века, к научной революции XVI–XVII веков и далее к Ньютону, Эйнштейну, стандартной модели, гравитации и теории струн.
В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.
Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.
Специалист по проблемам мирового здравоохранения, основатель шведского отделения «Врачей без границ», создатель проекта Gapminder, Ханс Рослинг неоднократно входил в список 100 самых влиятельных людей мира. Его книга «Фактологичность» — это попытка дать читателям с самым разным уровнем подготовки эффективный инструмент мышления в борьбе с новостной паникой. С помощью проверенной статистики и наглядных визуализаций Рослинг описывает ловушки, в которые попадает наш разум, и рассказывает, как в действительности сегодня обстоят дела с бедностью и болезнями, рождаемостью и смертностью, сохранением редких видов животных и глобальными климатическими изменениями.
Американский генетик Дэвид Райх – один из главных революционеров в области изучения древней ДНК, которая для понимания истории человечества оказалась не менее важной, чем археология, лингвистика и письменные источники. В своей книге Райх наглядно показывает, сколько скрытой информации о нашем далеком прошлом содержит человеческий геном и как радикально геномная революция меняет наши устоявшиеся представления о современных людях. Миграции наших предков, их отношения с конкурирующими видами, распространение культур – все это предстает в совершенно ином свете с учетом данных по ДНК ископаемых останков.
Все решения и поступки зарождаются в нашей психике благодаря работе нейронных сетей. Сбои в ней заставляют нас страдать, но порой дарят способность принимать нестандартные решения и создавать шедевры. В этой книге нобелевский лауреат Эрик Кандель рассматривает психические расстройства через призму “новой биологии психики”, плода слияния нейробиологии и когнитивной психологии. Достижения нейровизуализации, моделирования на животных и генетики помогают автору познавать тайны мозга и намечать подходы к лечению психических и даже социальных болезней.
«Уравнение Бога» – это увлекательный рассказ о поиске самой главной физической теории, способной объяснить рождение Вселенной, ее судьбу и наше место в ней. Знаменитый физик и популяризатор науки Митио Каку прослеживает весь путь удивительных открытий – от Ньютоновой революции и основ теории электромагнетизма, заложенных Фарадеем и Максвеллом, до теории относительности Эйнштейна, квантовой механики и современной теории струн, – ведущий к той великой теории, которая могла бы объединить все физические взаимодействия и дать полную картину мира.