Всё ещё неизвестная Вселенная. Мысли о физике, искусстве и кризисе науке - [4]

Шрифт
Интервал

Основная область моих собственных исследований — физика элементарных частиц — не имеет прямого практического применения[8], понятного всем (хотя сюрпризы всегда возможны), поэтому лично для меня невелика радость говорить о важности прикладного аспекта в историческом развитии науки. Сегодня в фундаментальной науке, вроде физики частиц, выработаны стандарты верификации, которые делают практическое применение необязательным для проверки нашей правоты (ну, или нам так кажется), и ученые работают без оглядки на практическое применение, только ради интеллектуального удовлетворения. Однако фундаментальным исследованиям по-прежнему приходится конкурировать за государственную поддержку с прикладными науками, такими как химия и биология, практическая польза которых очевидна.

К сожалению, аргументы в борьбе за поддержку астрономии, построенные на тех ее практических применениях, о которых я говорил выше, совершенно устарели. Теперь для отсчета времени мы используем атомные часы, настолько точные, что мы можем измерить малейшие изменения в длительности суток и года. Текущую дату мы узнаем, взглянув на наручные часы или экран компьютера. А недавно звезды потеряли свою значимость и для навигации.

В 2005 г., путешествуя на борту парусного лайнера Sea Cloud, совершавшего круиз по Эгейскому морю, как-то вечером я обсуждал с капитаном корабля вопросы навигации. Он показал мне, как пользоваться секстантом и хронометром для определения координат в море. Измеряя секстантом угол между горизонтом и положением определенной звезды в известный, благодаря хронометру, момент времени, можно определить, что ваше судно должно находиться где-то на заданной кривой на карте Земли. Проведя измерение с другой звездой, можно получить еще одну кривую, точка пересечения которой с первой кривой и укажет ваше местоположение. Если повторить процедуру c третьей звездой, можно проверить, не совершили ли вы ошибку: третья кривая должна пересечь первые две в той же точке. Продемонстрировав все это, мой друг капитан посетовал, что молодые офицеры торгового флота уже не умеют определять свое местоположение с помощью хронометра и секстанта. Из-за появления спутниковых систем глобального позиционирования навигация по звездам стала ненужной.

У астрономии осталось одно полезное назначение: она сохранила ключевую роль в нашем познании законов природы. Как я упоминал, именно задача о движении планет привела Ньютона к открытию законов движения и закона всемирного тяготения. Тот факт, что атомы поглощают и излучают свет только определенных длин волн, был обнаружен в начале XIX в. в результате изучения спектра Солнца, а впоследствии, уже в XX в., это открытие привело к развитию квантовой механики. Кроме того, в XIX в. эти наблюдения за Солнцем позволили открыть новые, прежде неизвестные, химические элементы, например гелий. В начале XX в. общая теория относительности Эйнштейна (ОТО) была проверена на астрономических объектах — сначала на основе сравнения теоретических расчетов с наблюдаемым движением планеты Меркурий, а затем благодаря успешному предсказанию отклонения света звезд гравитационным полем Солнца.

После экспериментального подтверждения ОТО источник данных, обеспечивающий прогресс фундаментальной физики, на некоторое время сместился из области астрономии сначала в область атомной физики, а затем, в 1930-х гг., в область ядерной физики и физики элементарных частиц. Однако прогресс в физике частиц замедлился после создания в 1960–1970-х гг. Стандартной модели элементарных частиц, которая обобщала все имеющиеся на тот момент данные об их поведении. Единственное открытие, сделанное за последние годы в этой области, которое выходит за рамки Стандартной модели, — определение мизерных масс различных типов нейтрино, и это открытие имеет некоторое отношение к астрономии, поскольку исследовались нейтрино, испускаемые Солнцем.

Между тем сегодня мы живем в золотой век космологии, как бы банально это ни звучало. Астрономические наблюдения и космологическая теория подкрепляют друг друга, и сегодня мы с полной уверенностью можем сказать, что Вселенная в своей текущей фазе расширения существует 13,73 млрд лет с ошибкой, не превышающей 0,16 млрд лет. Эти исследования показали, что только 4,5 % всей энергии Вселенной приходится на обычное вещество — электроны и атомные ядра. Примерно 23 % всей энергии запасено в массе темной материи — частиц, которые не взаимодействуют с обычным веществом или излучением и о существовании которых мы можем судить только по воздействию создаваемых ими гравитационных сил на вещество и свет. Большая часть энергетического баланса Вселенной — около 72 % — это темная энергия, которая запасена не в форме массы частиц какого-либо типа, а в самом пространстве, и именно она ускоряет расширение Вселенной. Объяснение темной энергии сегодня является сложнейшей задачей физики элементарных частиц.

Несмотря на эти перспективы, и астрономии, и физике частиц все тяжелее бороться за государственную поддержку. В 1993 г. конгресс США отменил программу строительства ускорителя — Сверхпроводящего суперколлайдера (Superconducting Super Collider, SSC). В этом ускорителе можно было бы получить новые частицы с массами в более широком диапазоне значений, в том числе, возможно, и частицы темной материи. Европейский консорциум CERN подхватил эту задачу, но его новый ускоритель — Большой адронный коллайдер (БАК) — сможет работать с частицами, диапазон значений масс которых втрое уже, чем тот, которого можно было бы достичь на SSC, а финансирование строительства следующего после БАК ускорителя становится все менее вероятным. Что касается астрономической науки, то здесь NASA урезало программы Beyond Einstein и Explorer — главные программы астрономических исследований, вроде тех, что обеспечили огромный прогресс последних лет в космологии.


Еще от автора Стивен Вайнберг
Мечты об окончательной теории: Физика в поисках самых фундаментальных законов природы

В своей книге «Мечты об окончательной теории» Стивен Вайнберг – Нобелевский лауреат по физике – описывает поиск единой фундаментальной теории природы, которая для объяснения всего разнообразия явлений микро– и макромира не нуждалась бы в дополнительных принципах, не следующих из нее самой. Электромагнитные силы и радиоактивный распад, удержание кварков внутри нуклонов и разлет галактик – все это, как стремятся показать физики и математики, лишь разные проявления единого фундаментального закона.Вайнберг дает ответ на интригующие вопросы: Почему каждая попытка объяснить законы природы указывает на необходимость нового, более глубокого анализа? Почему самые лучшие теории не только логичны, но и красивы? Как повлияет окончательная теория на наше философское мировоззрение?Ясно и доступно Вайнберг излагает путь, который привел физиков от теории относительности и квантовой механики к теории суперструн и осознанию того, что наша Вселенная, быть может, сосуществует рядом с другими вселенными.Книга написана удивительно живым и образным языком, насыщена афоризмами и остроумными эпизодами.


Первые три минуты

В книге крупнейшего американского физика-теоретика популярно и увлекательно рассказывается о современном взгляде на происхождение Вселенной. Описаны факты, подтверждающие модель «горячей Вселенной», рассказана история фундаментальных астрофизических открытий последних лет. С большим мастерством и научной точностью излагается эволюция Вселенной на ранних стадиях ее развития после «Большого взрыва».В новое издание вошла также нобелевская лекция С. Вайнберга, в которой описывается история возникновения единой теории слабых и электромагнитных взаимодействий.Для читателей, интересующихся проблемами космологии.


Объясняя мир. Истоки современной науки

Книга одного из самых известных ученых современности, нобелевского лауреата по физике, доктора философии Стивена Вайнберга – захватывающая и энциклопедически полная история науки. Это фундаментальный труд о том, как рождались и развивались современные научные знания, двигаясь от простого коллекционирования фактов к точным методам познания окружающего мира. Один из самых известных мыслителей сегодняшнего дня проведет нас по интереснейшему пути – от древних греков до нашей эры, через развитие науки в арабском и европейском мире в Средние века, к научной революции XVI–XVII веков и далее к Ньютону, Эйнштейну, стандартной модели, гравитации и теории струн.


Рекомендуем почитать
Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Ньютон. Закон всемирного тяготения. Самая притягательная сила природы

Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.


Климатическая наука: наблюдения и модели

Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.


Фактологичность

Специалист по проблемам мирового здравоохранения, основатель шведского отделения «Врачей без границ», создатель проекта Gapminder, Ханс Рослинг неоднократно входил в список 100 самых влиятельных людей мира. Его книга «Фактологичность» — это попытка дать читателям с самым разным уровнем подготовки эффективный инструмент мышления в борьбе с новостной паникой. С помощью проверенной статистики и наглядных визуализаций Рослинг описывает ловушки, в которые попадает наш разум, и рассказывает, как в действительности сегодня обстоят дела с бедностью и болезнями, рождаемостью и смертностью, сохранением редких видов животных и глобальными климатическими изменениями.


Кто мы и как сюда попали

Американский генетик Дэвид Райх – один из главных революционеров в области изучения древней ДНК, которая для понимания истории человечества оказалась не менее важной, чем археология, лингвистика и письменные источники. В своей книге Райх наглядно показывает, сколько скрытой информации о нашем далеком прошлом содержит человеческий геном и как радикально геномная революция меняет наши устоявшиеся представления о современных людях. Миграции наших предков, их отношения с конкурирующими видами, распространение культур – все это предстает в совершенно ином свете с учетом данных по ДНК ископаемых останков.


Расстроенная психика. Что рассказывает о нас необычный мозг

Все решения и поступки зарождаются в нашей психике благодаря работе нейронных сетей. Сбои в ней заставляют нас страдать, но порой дарят способность принимать нестандартные решения и создавать шедевры. В этой книге нобелевский лауреат Эрик Кандель рассматривает психические расстройства через призму “новой биологии психики”, плода слияния нейробиологии и когнитивной психологии. Достижения нейровизуализации, моделирования на животных и генетики помогают автору познавать тайны мозга и намечать подходы к лечению психических и даже социальных болезней.


Уравнение Бога. В поисках теории всего

«Уравнение Бога» – это увлекательный рассказ о поиске самой главной физической теории, способной объяснить рождение Вселенной, ее судьбу и наше место в ней. Знаменитый физик и популяризатор науки Митио Каку прослеживает весь путь удивительных открытий – от Ньютоновой революции и основ теории электромагнетизма, заложенных Фарадеем и Максвеллом, до теории относительности Эйнштейна, квантовой механики и современной теории струн, – ведущий к той великой теории, которая могла бы объединить все физические взаимодействия и дать полную картину мира.